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Abstract

Recently there has been considerable work toward 
standardizing SEFs (software exchange formats) for 
interchange of information about source programs.  An 
exchange format is a common textual form for data 
extracted from source programs and used by a variety of  
software analysis and visualization tools.   An SEF can 
be further specified by a schema, analogous to a schema 
for a data base.  This paper explains how a schema 
union, which is combination of schemas, can be used as 
the basis for creating an extractor.  The paper describes 
the CPPX extractor, which transforms GCC output 
(satisfying the internal schema of the GCC compiler) to 
a new format (satisfying a schema designed for exchange, 
namely that of the Datrix project).  CPPX performs this 
transformation as a pipelined sequence of sub-
transformations.  At each stage in the pipeline, the 
intermediate data conforms to the union of the two 
schemas. 

1. Introduction

In the field of software reverse engineering, it is common 
to analyze a source program in order to determine certain 
properties about it.  This analysis often begins with 
parsing the program  to determine “facts” about it.  These 
facts are conveniently modeled as the AST (abstract 
syntax tree) of the source program, with additional edges   
to indicate semantic information such as typing or the 
resolution of scoped names.  There are several proposed 
standard SEFs (software exchange formats) [1][2], such as 
GXL [3][4], which standardize the output streams from 
such parsers.  These parsers are called fact extractors or, 
simply, extractors.

Many legacy programs are written in the C++ 
language.  The Datrix [7]  and Hungarian [14] schemas 
propose two different standards for representing facts 
extracted from C++ programs.  Up to this time, there 
does not exist an open source C++ extractor satisfying 
such a proposed standard schema.  The job of producing 

such an extractor is far from trivial, and is not rewarding 
to researchers or developers whose primary interest is in 
developing or using analysis tools.  Even if such an 
extractor existed, it would require a significant ongoing 
maintenance effort.  The CPPX project, whose present 
members are the authors of this paper, undertook to create 
such an extractor. 

The goals of this project included:
1. Open source.  The extractor and the source code of 

implementation should be freely available.
2. Minimal resources and early delivery.  We had 

roughly eight person months to work on this project.   
Dean and Malton were each available for roughly four 
months.   Holt played a supervisory role.  The target 
delivery date, May 2001, was four months after the 
initiation of the project.   

3. Minimal maintenance.  The extractor should be 
designed so maintenance could reasonably be done by a 
distributed team of unpaid volunteers, in the spirit of 
the open software community. 

4. Standard SEF.  The output should be in the form that 
meets a visible standard or specification.

5. Deliver all semantic facts.  The extracted data should 
sufficient to represent the complete semantics of the 
source program, down to and including expressions, and 
thereby suffice for the needs of a broad class of reverse 
engineering tools, such as tools to compute metrics, to 
produce visualizations, to detect clones, etc.

6. Source complete.  It should be possible to recover the 
source program from the extracted facts.  (This goal  
was significantly compromised.)

7. Production quality.  The extractor should support 
commercial work.

8. Performance.  The extractor should run no slower than 
a compiler.
The team took a pragmatic, engineering approach, 

knowing that it would probably not be able to attain all 
project goals. The overriding goal was to produce an 
initial, usable version of the extractor by the target 
delivery date.  This led to two early design decisions:
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1. The output format would satisfy GXL and the Datrix 
C++ schema.  GXL [3][4] is a standard form of XML, 
specified by DTD [5], which is designed for exchanging 
graph data. Bell Canada's Datrix project [6] designed a 
model [7][8] which specifies a standard AST of a C++ 
program. We decided to have CPPX emit GXL streams 
representing C++ ASTs in the Datrix model.

2. Use GCC as a front-end.  We decided that CPPX 
should be based the GNU C++ front-end, since that 
front-end already does parsing and semantic analysis of  
C++ programs, and since it already has a team of 
maintainers.  We decided to minimize our changes to 
GCC and to minimize the size of interface between 
GCC and our to-be-written code for CPPX.
Furthermore we needed a basis upon which two 

developers could proceed rapidly in parallel.  We decided to 
view that the existing GCC data structures (which are an 
AST of a source C++ program), as simply another graph, 
analogous to our target Datrix AST.  Then we could 
conceive of CPPX’s job as transforming one graph to 
another one [9][10].  Since we had considerable 
background in the theory and practice of graph 
transformations, we were quite comfortable with this 
approach.  We then designed a common graph format to 
represent both the GCC internal “graph” structure and the 
Datrix graph.  

The key design idea of CPPX, and the main topic of 
this paper, is that a back-end extractor such as CPPX can 
be designed and implemented as a succession of relatively 
simple and often largely independent graph sub-
transformations.  The sub-transformations can be (and for 
CPPX were) specified as a table of tasks.  For example, 
“templates” are the C++ facility for polymorphic type 
construction.  One task is to transform the subgraph 
representing a template in GCC to the corresponding  
subgraph in the Datrix model.

To do this, we formed a “union” of the two schemas, 
that is, a generalized schema allowing all the node types 
and edges of both the GCC and Datrix schemas.  At each 
stage, after some but not all of the transformations have 
been performed, the intermediate graph satisfies the union 
schema. The intermediate graphs preserve "semantics", 
that is, they continue to be representations of the input 
C++ program. 

This view of the process of a sequence of sub-
transformations led to a software architecture as a 
pipeline, in which each transformer accepts an 
intermediate graph and produces one.  We implemented 
the transformers as small C programs which operate on a 
common data structure which represents the evolving 
graph. 

2. Schemas and Their Goals

For any data modeling problem there may be more than 
one schema to represent the data. Which schema is the 
most appropriate depends on the task for which the data 
model will be used.  Some schemas are very similar 
except for the number and types of attributes, but the 
details of the schemas will differ from task to task.

A programming language is a data modeling problem. 
Example entity sets in the schema may be variables, 
procedures, types and statements.  The type of a variable, 
the nesting of a statement within a function and the 
declaration of a field in a record are all  relationships that 
might appear in the schema.

Programming language models may be used for many 
purposes.  Perhaps the oldest class of such models are 
those used by compilers.  A compiler builds a set of 
internal data structures (e.g. parse tree, symbol table, type 
table) representing the program being compiled.  The 
name ’compiler’ comes from the task of compiling tables.   

Other tools such as syntax-based editors [11], code 
development environments, and revision control 
systems[12][13] also use models of software source code.  
Not surprisingly, the data model of  each tool is specific to 
its task. Reverse-engineering tools analyze software source 
code and extract a model whose purpose is program 
analysis and comprehension. The use of such models 
varies from general technology surveys (e.g. embedded 
SQL, windowing systems, transaction environments) to 
impact analysis (e.g. impact of changing the data 
representation of a record), through design recovery and 
redocumentation.

The model used by a compiler serves as an intermediary 
between high level source code and low level machine 
code, and the schema will be tailored for this purpose.  
The typical compiler schema includes many details not of 
interest for program comprehension, but necessary for 
semantic validation and code generation.  For example, a 
compiler will artificially insert expressions to represent 
implicit type coercions, and may model assignment 
differently for each of the primitive types.  The compiler 
may also represent information at a finer granularity, 
choosing to duplicate information throughout the model 
in order to ease the task of code generation.

Information of interest for program comprehension 
may not exist in the compiler’s model, and may be 
difficult to infer.  For example, the original lexical form 
of a literal will not be retained, but only its value.  For 
another example, some compilers do not retain source 
formatting beyond file and line number.
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2.1 C++ models

The reverse engineering community has proposed several 
schemas for C++ SEFs. Two of them are the Datrix 
Schema [7][8] and the Hungarian Schema [14].  In this 
section we use a concrete example in C++ to illustrate 
some of the differences between a reverse engineering 
schema and the schema used internally by the GCC 
compiler.

The Datrix schema is aimed at C style programming 
languages: C, C++ and Java.  With some minor 
modifications, this is the model that we chose to use as 
the target of the CPPX extractor.  Figure 1 shows a 
simple C++ class declaration.  It is too simple to be 
realistic but simple enough to illustrate the difference 
between the Datrix schema and the schema used by the 
GCC compiler.

class A {
private:

int b;
public:

int get() { return b; };
}

Figure 1. Simple C++ Class Declaration

Figure 2 shows the Datrix model of the source in 
Figure 1, as produced by CPPX.   The class A is 
represented by node 2, which has two children (connected 
by the ArcSon edge) corresponding to the two members of 
A: the field b  (node 4) and the method get  (node 5).  
Since the members are both integer-valued, their nodes are 

connected to the built-in type int  (node 3) by edges of 
type Instance. The function contains a block, which in 
turn contains a return statement, which refers to the field 
b. The numbers beside ArcSon edges are the ordinal of the 
edge and models the syntactic order of elements such as 
class members or statements within a block.

The example shows that a Datrix graph is structurally 
close to the source code, and is independent of any 
particular compiler or target representation.  For example, 
the graph does not represent the size of the C++ type int  
(it might be 16, 32, 64 or some other number of bits).  
The model is also independent of the implementation of 
the “this” pointer and the implementation of method 
dispatching.

Figure 3 shows a small excerpt of the graph produced 
by the GCC compiler from the same source code. The 
graph is based on data available from a maintainer’s dump 
facility in the compiler. Some nodes and attributes not 
needed for the translation to the Datrix schema have been 
suppressed. Also the figure has been pruned to exclude 
unused built-in types.   Even after pruning, the GCC 
model for the example program has 87 nodes of 22 
different types.  For this reason parts of the model have 
been elided (by “...”). Cross-references are indicated by a 
small circle containing a node identifier.

Note several compiler-specific details in Figure 3, in 
which some interesting nodes have been highlighted. The 
class A is represented by node 5 and the field b  by the 
node 9. Both have size attributes that are integer literals, 
which in turn have a type integer_type (name: 
bit_size_type) given by node 15.

The chain of function_decl nodes from 9 to 148 
represent the methods of the structure. The last one in the 
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list, 148 is the user defined function get .  The first one 
in the chain (node 9) is the default copy constructor.  The 
methods in the middle (elided) are the default constructors 
and deconstructors. Only the get  function has a body 
(also elided). The rest of the graph represents the 
signatures of functions that must be generated since the 
definition is not provided in the example.

3 Transformation Using Union Schemas

This section discusses how CPPX transforms the initial 
GCC graph to a Datrix graph.

3.1 Schema Transformation in Stages

CPPX’s translation task is a restructuring: that is, it 
is supposed to be “semantics preserving” at approximately 
the same level of abstraction. (The GCC model is at a 
slightly lower level because of its goal of compilation.)

In general, a “semantics preserving” transformation 
between schemas is a function which maps (instances of) 
one schema to (corresponding instances of) the other 
schema, such that the “semantics” is held fixed.

The semantics is held fixed in two senses.  First,  a 

graph schema for representing facts about a program 
defines a “view” of the program, in which facts of interest 
are encoded and some uninteresting facts are ignored or 
abstracted away.  If P is the set of programs and S the set 
of graphs, the view may be considered as an abstraction 
function c : P -> S.  In our case there are two schemas 
Sinitial and Sfinal, and correspondingly two views  cinitial and cfinal, 
The required “semantics preserving transformation” ios a 
function t : Sinitial -> Sfinal  for which cfinal (p) = t (cinitial (p)) for 
any program p.  This just says that the initial view, 
transformed, must be the final view.

The second sense of “fixed semantics”, when 
transforming program schemas, comes from the source 
completeness goal mentioned in the Introduction.  From 
any graph of a program we must be able to reconstruct 
source, if not perfectly, then at least to the extent that the 
reconstructed program has the same (operational) 
semantics.

The transformation t is quite complicated to describe all 
at once, and we have found it useful to factor it into stages 
ti, pipelined together, such that t = tn-1 o ... o t1 o t0.  
Doing so suggests that we need (at least conceptually) 
many different intermediate schemas, one for each stage.  
In practice we form instead a union schema : a single 

4

namespace_decl0 : identifier_node1 :
strg: “ :: ”

name
type_decl2 :

dcls

identifier_node16 :
strg: “ b”

identifier_node4 :
strg: “ 1A”

mngl

 5 : record_type 

name
type

type_decl87 :chan

name

size

flds

funcs

integer_cst7 :
hi:
lo:

0
32

 15 : integer_type 

type_decl38 :

name
size
…

type

8 : field_decl 

identifier_node3 :
strg: “ A”

name

integer_type17 :

type

size… chan

18 : type_decl
9 : function_decl 

22 :
strg: “ _ZN1AaSERKS_”

identifier_node

identifier_node21 ::
strg: “ operator= ”

mngl
name

23 : method_type

25 : parm_decl

148 : function_decl

chan

type

args

min
…

max
…

nametype

name

type

42 : reference_type

43 : tree_list

retn

parmsidentifier_node48 :
strg: “ this ” name

49 : pointer_type

typechan

identifier_node63 :
strg: “ int ”

name
chan

refd

identifier_node34 :
strg: “ bit_size_type ”

size
…

size
…

ptd

5

…
65 : pointer_type

size
…

ptd

5

value

chan
…

…
chan

identifier_node107 :
strg: “ void ”

name

void_type68 :

nametype

identifier_node164 :
strg: “ get ”

name
166 : method_type

identifier_node165 :
strg: “ get ”

mngl

type

args body

……

retn

17

parms

…

Figure 3. Reduced GCC Model of Example Source Code



schema S capable of representing the views cfinal(p) , 
cinitial(p), and and required intermediate transformations as 
well.  Figure 4 shows the pipeline and requirements for 
the intermediate transformations.

P

S S

cinitial
cfinal

t

S … S
t0 t1 tn-2 tn-1

…c1 cn-1

Figure 4. Union Schema Pipeline  

3.2 Constructing the Union Schema

In constructing the union schema we have adapted a 
technique [15] familiar to us from programming in the 
transformational programming language TXL [10].

The purpose of the union schema is to support the 
initial and final encoding, and to allow (and to a certain 
extent direct) the construction of intermediate encodings, 
so that the individual steps ti can be transformations from 
S to S determined by ci = ti o ci-1.  The first step in 
constructing the union schema is to cast the initial and 
final schemas into a common conceptual model.  Next, 
corresponding structures in each are identified, and the 
resulting union schema is implemented as a data structure 
(for CPPX, in C).  Lastly, translation functions and 
exchange-format programs are written to apply to 
instances of the union data structure. Similar steps were 
originally identified by Cordy for the closely related 
“union grammar” technique [15].  We now examine each 
of the steps in more detail.
3.2.1 Choose a common conceptual model. As 
described above, for CPPX we had to do with:
1. The initial model, of GCC, implemented as C 

structures and pointers, extended by wonderfully 
intricate uses of the C macro facility, and documented 
in English, and

2. the final model, the “Datrix” model, described by a 
technical report [7], and partly formalized in TA [16].
The conceptual model of the GCC schema requires 

entities (represented as structs ) with entity attributes 
(struct  members), direct references to other entities 
(pointers), and union types. Union types are implemented 
both by systematic use of union types  in C, and also in 
other cases by  means of the macro facility and naming 
conventions.  The use of pointers implies that 
relationships are all cardinality “zero-or-one”: multi-
occurring relationships are encoded in the GCC model 

using various kinds of linked lists. Figure 5 shows that 
part of the GCC data structuring scheme which justifies 
the graph in Figure 3.  In this diagram, from which much 
has been omitted, white-headed arrows indicate union 
types (the arrow points from the union to the member),  
black-headed arrow indicate pointers,  and italic names 
indicate simple attributes, nesting indicates structural 
containment.  Because this is all implemented in C, 
necessarily the schema has been inferred, by hand, from 
the code.

The conceptual model of the Datrix schema is that of 
TA [16], requiring typed entities (represented as labeled 
nodes in a graph) with simple-valued attributes, and typed 
binary relationships (represented as labeled edges in a 
graph), also allowed to have attributes.  Relationships can 
be constrained with respect to the type (label) of their 
domain and codomain (source and target).  (In the informal 
model, but not in the schema, there are also cardinality 
constraints, i.e. specifications of the allowed number of 
instances of a relationship involving a particular entity.)  
Figure 6 shows that part of the Datrix schema which 
justifies the graph in Figure 2.  In Figure 6 white-headed 
arrows indicate inheritance (the arrow points at the 
superclass) and black-headed arrows indicate possibly-
attributed relationships.  Our Datrix schema was 
transcribed almost directly from its highly-structured 
documentation [7][8].
3.2.2 Identify corresponding structures. It is 
apparent that the two conceptual models are similar in 
spirit but by no means identical.  For our purposes it 
proved practical to use the TA concepts extended by  
attribute values which are direct references to other 
entities.  Thus in the union model there are typically two 
ways to represent a relationship: either with an explicit 
TA-style edge, or with a reference-valued attribute.

The task of identifying corresponding structures is 
fairly straightforward, but is delicate because it governs 
the whole transformation process which follows.  
Essentially the idea is to represent partial or incremental 
results of the whole transformation by allowing 
relationships in both “sides” of the union to involve 
entities from either “side”.

For simple examples: the GCC entity function_decl 
corresponds to the Datrix entity Function; the GCC entity 
field_decl corresponds to the Datrix entity Object.  In 
these and similar cases the correspondence holds simply 
because they are representing the same syntactic structure 
in the source language C++.  

For more complex examples of correspondence, 
consider the relationship chan (=”chain”)  in the GCC 
schema, which serves as a general-purpose link between 
tree nodes.  With this relationship, any other relationship 
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can be made multi-occurring by chaining multiple 
occurrences together.  A typical example is the 
relationship between an aggregate or record type and its 
members.  In the GCC schema this is indicated by 
pointers “flds” and “funcs” from a record_type to the (first) 
field_decl and to the (first) function_decl, which then are 

linked to the remaining similar members by “chan” 
pointers.  This is convenient for the goal of the GCC 
schema, namely processing during compilation.  By 
contrast, in the Datrix schema there is an ArcSon 
relationship from AggrType to Identifier: and the ArcSon 
relationship has an order attribute indicating sequence 
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within the aggregate.  This is in keeping with the goal of 
the Datrix schema, which is to show a structural view 
suitable for high level analyses.

Figure 7 shows a portion of the union schema, in 
which corresponding entity types and edge types are 
indicated by thick lines.  The meaning of the combined 
schema is to relax the type constraints so that entities and 
relationships can play a role specified for their 
corresponding entities or relationships.  

Figure 8 shows a portion of the example “in the 
middle” of transformation.  Here it is shown how the field 
b of the class A has been converted to the Datrix schema, 
and the corresponding edges have been converted from 
“flds” and “funcs” to “ArcSon”. The class A itself and the 
function members are still in the GCC form. The root of 
the graph (the global namespace) has also been converted 
to the Datrix schema as have the built in types (elliptical 
nodes 68 and 17) and the edges connecting them.  This 
example therefore satisfies the union schema, but neither 
the initial schema nor the final schema.

3.2.3 Build translation and output functions. 
We discovered that there were three kinds of 
transformation step for instances of the union schema:

1. simple replacement transforms
2. construction of parallel corresponding structures
3. filtering (garbage collection)

During transformation of a particular correspondence, 
we found that in simple cases (e.g. Function = 
function_decl) it is convenient to “replace” a node entry of 
GCC type with the corresponding entry of Datrix type, 
reusing the node directly.  The advantage of doing so was 
that all references to that entity elsewhere in the graph 

would continue correct in the union schema, for they 
would continue to refer to the corresponding structure.

The disadvantage of this replacement approach was that 
it requires all the information in a node to be “converted” 
at once, since it is otherwise lost when the node is 
replaced.   For more complex situations where it was not 
practical to do this, we created a parallel structure instead.  
A typical example was the list of actual parameters of a 
call, which are linked together using “tree_nodes” in the 
GCC model, but which must be formed into a subgraph 
called an “actual function parameter list” in the Datrix 
model. In the process the GCC nodes would be detached 
from the root of the tree, and the graph would be filtered 
afterwards, to remove nodes from the graph which are no 
longer accessible from the root of the compilation unit.   

4. The CPPX Implementation

The project ran for four months in the beginning of 2001.  
Of this, the first month was spent planning the 
transformation,  modifying the GCC compiler dumping 
routines and implementing the final output routines.  The 
remaining two and a half months were spent building and 
testing the transformation routines.
The project has the following components:
1. A header file defining the binary union schema format 

and utilities to read and write files containing individual 
models.

2. Two replacement graph dumping files for the GCC 
compiler and changes to the makefile for the compiler.

3. Two filters used for initial input conditioning and 
garbage collection.

4. A number of individual transforms that change the 
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GCC schema to the Datrix schema.
5. Output generators that translate the binary 

representation to one of three text representations: TA 
[16], VCG [17] and GXL.

6. Utility functions used by all of the above.
7. A query program used to examine individual elements 

of the binary files.
8. A driver program that coordinates most of the above 

elements.
The output generators can output a TA, VCG or GXL 

version of the final graph (in the Datrix schema) or the 
output of any of the intermediate results (in the union 
schema).  Thus the CPPX generators can be used to 
produce interchange formats that allow tools to operate on 
graphs expressed in the GCC.

GXL output from the transformer has been 
successfully checked against the GXL DTD definition 
using rxp [18].  We have checked that the output of the 
transformer matches the modified Datrix Schema using a 
schema checker written in grok[19]. 

The CPPX software may be freely downloaded from 
the web site swag.uwaterloo.ca/~dean/cppx .

6. Conclusions

During the last roughly ten years, a number of efforts 
have produced analysis systems for languages such as 
C++.  Among the best known of these are CIAO [20], 
Refine [21], Rigi [2], TXL [10][22], PBX [23] and 
RMTool [24].  As well, large commercial organizations 
such as IBM, Sun and Microsoft are increasing providing 
open interfaces to, or open source for their compilers and 
their IDEs.  There are a number of ongoing efforts to 
provide standard APIs or standare SEFs for such tools; see 
the WoSEF for a survey of many of these efforts [25].

In our introduction we listed 8 goals. We examine at 
each individually to see how close we came.
1. Open source. The source code can be freely downloaded 

from swag.uwaterloo.ca/~dean/cppx.
2. Minimal resources and early delivery.  The first 

version of CPPX is available from mid-May 2001.
3. Minimal maintenance. The multiple transform 

approach permitted the two developers to work quite 
independently.  This same architecture will permit on-
going distributed maintenance.

4. Standard SEF.  The output of the extractor is in a 
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…
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…
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…
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Figure 8. Partial Result in Union Schema



slightly modified version of the the Datrix model 
encoded in GXL.

5. Deliver all semantic facts.  The first version omits a 
small set of features, but there is no obstacle to 
including them over the following couple of months.

6. Source complete. Most of the source program (after 
preprocessing) can be recovered from the CPPX output.  
Those source aspects which cannot be recovered are 
either unavailable from the initial GCC graph, or in 
principle cannot be represented in the Datrix model.

7. Production quality. Parsing and semantic analysis is 
done by the GCC compiler, and hence CPPX accepts 
whatever GCC accepts.  Since GCC is used for 
production development, this goal is met to the same 
extent. However, there are dialects of C++ which GCC 
doesn’t compile.

8. Performance. Initial measurements suggest that 
CPPX runs at the same speed, or somewhat slower 
than, the production compiler.

Transformations on graphs are common in software 
analysis tools. For example, graph transforms may be 
used to raise the level of source facts to an architectural 
level[7]. In many cases, translation between schemas is 
one goal of the transform. Thus the union schema 
approach has a great deal of potential for general use.
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