
Union Schemas as a Basis for a C++ Extractor

Thomas R. Dean
Andrew J. Malton

Ric Holt

Abstract

Recently there has been considerable work toward standardizing SEFs (software
exchange formats) for interchange of information about source programs. An exchange
format is a common textual form for data extracted from source programs and used by a
variety of software analysis and visualization tools. An SEF can be further specified
by a schema, analogous to a schema for a data base. This paper explains how a schema
union, which is combination of schemas, can be used as the basis for creating an
extractor. The paper describes the CPPX extractor, which transforms GCC output
(satisfying the internal schema of the GCC compiler) to a new format (satisfying a
schema designed for exchange, namely that of the Datrix project). CPPX performs this
transformation as a pipelined sequence of sub-transformations. At each stage in the
pipeline, the intermediate data conforms to the union of the two schemas.

Submission Category:

Techniques & Tools

Keywords:

Reverse Engineering, C++ Schema, Extractor

Contact Author:
Andrew J. Malton

Surface Mail:

Department of Computer Science

200 University Avenue West

University of Waterloo

Waterloo, Ontario N2L 3G1

Canada

Email: dean@cs.queensu.ca, {malton, holt}@uwaterloo.ca
Phone: +1 (519) 888-4567 x5144
Fax: +1 (519) 885-1208

1

Abstract

Recently there has been considerable work toward
standardizing SEFs (software exchange formats) for
interchange of information about source programs. An
exchange format is a common textual form for data
extracted from source programs and used by a variety of
software analysis and visualization tools. An SEF can
be further specified by a schema, analogous to a schema
for a data base. This paper explains how a schema
union, which is combination of schemas, can be used as
the basis for creating an extractor. The paper describes
the CPPX extractor, which transforms GCC output
(satisfying the internal schema of the GCC compiler) to
a new format (satisfying a schema designed for exchange,
namely that of the Datrix project). CPPX performs this
transformation as a pipelined sequence of sub-
transformations. At each stage in the pipeline, the
intermediate data conforms to the union of the two
schemas.

1. Introduction

In the field of software reverse engineering, it is common
to analyze a source program in order to determine certain
properties about it. This analysis often begins with
parsing the program to determine “facts” about it. These
facts are conveniently modeled as the AST (abstract
syntax tree) of the source program, with additional edges
to indicate semantic information such as typing or the
resolution of scoped names. There are several proposed
standard SEFs (software exchange formats) [1][2], such as
GXL [3][4], which standardize the output streams from
such parsers. These parsers are called fact extractors or,
simply, extractors.

Many legacy programs are written in the C++
language. The Datrix [7] and Hungarian [14] schemas
propose two different standards for representing facts
extracted from C++ programs. Up to this time, there
does not exist an open source C++ extractor satisfying
such a proposed standard schema. The job of producing

such an extractor is far from trivial, and is not rewarding
to researchers or developers whose primary interest is in
developing or using analysis tools. Even if such an
extractor existed, it would require a significant ongoing
maintenance effort. The CPPX project, whose present
members are the authors of this paper, undertook to create
such an extractor.

The goals of this project included:
1. Open source. The extractor and the source code of

implementation should be freely available.
2. Minimal resources and early delivery. We had

roughly eight person months to work on this project.
Dean and Malton were each available for roughly four
months. Holt played a supervisory role. The target
delivery date, May 2001, was four months after the
initiation of the project.

3. Minimal maintenance. The extractor should be
designed so maintenance could reasonably be done by a
distributed team of unpaid volunteers, in the spirit of
the open software community.

4. Standard SEF. The output should be in the form that
meets a visible standard or specification.

5. Deliver all semantic facts. The extracted data should
sufficient to represent the complete semantics of the
source program, down to and including expressions, and
thereby suffice for the needs of a broad class of reverse
engineering tools, such as tools to compute metrics, to
produce visualizations, to detect clones, etc.

6. Source complete. It should be possible to recover the
source program from the extracted facts. (This goal
was significantly compromised.)

7. Production quality. The extractor should support
commercial work.

8. Performance. The extractor should run no slower than
a compiler.
The team took a pragmatic, engineering approach,

knowing that it would probably not be able to attain all
project goals. The overriding goal was to produce an
initial, usable version of the extractor by the target
delivery date. This led to two early design decisions:

1

Union Schemas as a Basis for a C++ Extractor

Thomas R. Dean Andrew J. Malton Ric Holt
Queen’s University University of Waterloo University of Waterloo

dean@cs.queensu.ca malton@uwaterloo.ca holt@uwaterloo.ca

1. The output format would satisfy GXL and the Datrix
C++ schema. GXL [3][4] is a standard form of XML,
specified by DTD [5], which is designed for exchanging
graph data. Bell Canada's Datrix project [6] designed a
model [7][8] which specifies a standard AST of a C++
program. We decided to have CPPX emit GXL streams
representing C++ ASTs in the Datrix model.

2. Use GCC as a front-end. We decided that CPPX
should be based the GNU C++ front-end, since that
front-end already does parsing and semantic analysis of
C++ programs, and since it already has a team of
maintainers. We decided to minimize our changes to
GCC and to minimize the size of interface between
GCC and our to-be-written code for CPPX.
Furthermore we needed a basis upon which two

developers could proceed rapidly in parallel. We decided to
view that the existing GCC data structures (which are an
AST of a source C++ program), as simply another graph,
analogous to our target Datrix AST. Then we could
conceive of CPPX’s job as transforming one graph to
another one [9][10]. Since we had considerable
background in the theory and practice of graph
transformations, we were quite comfortable with this
approach. We then designed a common graph format to
represent both the GCC internal “graph” structure and the
Datrix graph.

The key design idea of CPPX, and the main topic of
this paper, is that a back-end extractor such as CPPX can
be designed and implemented as a succession of relatively
simple and often largely independent graph sub-
transformations. The sub-transformations can be (and for
CPPX were) specified as a table of tasks. For example,
“templates” are the C++ facility for polymorphic type
construction. One task is to transform the subgraph
representing a template in GCC to the corresponding
subgraph in the Datrix model.

To do this, we formed a “union” of the two schemas,
that is, a generalized schema allowing all the node types
and edges of both the GCC and Datrix schemas. At each
stage, after some but not all of the transformations have
been performed, the intermediate graph satisfies the union
schema. The intermediate graphs preserve "semantics",
that is, they continue to be representations of the input
C++ program.

This view of the process of a sequence of sub-
transformations led to a software architecture as a
pipeline, in which each transformer accepts an
intermediate graph and produces one. We implemented
the transformers as small C programs which operate on a
common data structure which represents the evolving
graph.

2. Schemas and Their Goals

For any data modeling problem there may be more than
one schema to represent the data. Which schema is the
most appropriate depends on the task for which the data
model will be used. Some schemas are very similar
except for the number and types of attributes, but the
details of the schemas will differ from task to task.

A programming language is a data modeling problem.
Example entity sets in the schema may be variables,
procedures, types and statements. The type of a variable,
the nesting of a statement within a function and the
declaration of a field in a record are all relationships that
might appear in the schema.

Programming language models may be used for many
purposes. Perhaps the oldest class of such models are
those used by compilers. A compiler builds a set of
internal data structures (e.g. parse tree, symbol table, type
table) representing the program being compiled. The
name ’compiler’ comes from the task of compiling tables.

Other tools such as syntax-based editors [11], code
development environments, and revision control
systems[12][13] also use models of software source code.
Not surprisingly, the data model of each tool is specific to
its task. Reverse-engineering tools analyze software source
code and extract a model whose purpose is program
analysis and comprehension. The use of such models
varies from general technology surveys (e.g. embedded
SQL, windowing systems, transaction environments) to
impact analysis (e.g. impact of changing the data
representation of a record), through design recovery and
redocumentation.

The model used by a compiler serves as an intermediary
between high level source code and low level machine
code, and the schema will be tailored for this purpose.
The typical compiler schema includes many details not of
interest for program comprehension, but necessary for
semantic validation and code generation. For example, a
compiler will artificially insert expressions to represent
implicit type coercions, and may model assignment
differently for each of the primitive types. The compiler
may also represent information at a finer granularity,
choosing to duplicate information throughout the model
in order to ease the task of code generation.

Information of interest for program comprehension
may not exist in the compiler’s model, and may be
difficult to infer. For example, the original lexical form
of a literal will not be retained, but only its value. For
another example, some compilers do not retain source
formatting beyond file and line number.

2

2.1 C++ models

The reverse engineering community has proposed several
schemas for C++ SEFs. Two of them are the Datrix
Schema [7][8] and the Hungarian Schema [14]. In this
section we use a concrete example in C++ to illustrate
some of the differences between a reverse engineering
schema and the schema used internally by the GCC
compiler.

The Datrix schema is aimed at C style programming
languages: C, C++ and Java. With some minor
modifications, this is the model that we chose to use as
the target of the CPPX extractor. Figure 1 shows a
simple C++ class declaration. It is too simple to be
realistic but simple enough to illustrate the difference
between the Datrix schema and the schema used by the
GCC compiler.

class A {
private:

int b;
public:

int get() { return b; };
}

Figure 1. Simple C++ Class Declaration

Figure 2 shows the Datrix model of the source in
Figure 1, as produced by CPPX. The class A is
represented by node 2, which has two children (connected
by the ArcSon edge) corresponding to the two members of
A: the field b (node 4) and the method get (node 5).
Since the members are both integer-valued, their nodes are

connected to the built-in type int (node 3) by edges of
type Instance. The function contains a block, which in
turn contains a return statement, which refers to the field
b. The numbers beside ArcSon edges are the ordinal of the
edge and models the syntactic order of elements such as
class members or statements within a block.

The example shows that a Datrix graph is structurally
close to the source code, and is independent of any
particular compiler or target representation. For example,
the graph does not represent the size of the C++ type int
(it might be 16, 32, 64 or some other number of bits).
The model is also independent of the implementation of
the “this” pointer and the implementation of method
dispatching.

Figure 3 shows a small excerpt of the graph produced
by the GCC compiler from the same source code. The
graph is based on data available from a maintainer’s dump
facility in the compiler. Some nodes and attributes not
needed for the translation to the Datrix schema have been
suppressed. Also the figure has been pruned to exclude
unused built-in types. Even after pruning, the GCC
model for the example program has 87 nodes of 22
different types. For this reason parts of the model have
been elided (by “...”). Cross-references are indicated by a
small circle containing a node identifier.

Note several compiler-specific details in Figure 3, in
which some interesting nodes have been highlighted. The
class A is represented by node 5 and the field b by the
node 9. Both have size attributes that are integer literals,
which in turn have a type integer_type (name:
bit_size_type) given by node 15.

The chain of function_decl nodes from 9 to 148
represent the methods of the structure. The last one in the

3

NameSpace1 :
name: “::”

 ArcSon(1)

ArcSon(1) ArcSon(2) Instance

ArcSon(2)

ArcSon

Object4 :
name: “ b”
visb: pri

BuiltInType3 :
“int ”name:

Block5 :

Instance

Return6 :
ArcSon

NameRef7 :
ArcSon

RefersTo

Function
name: “ get ”
visb: pub

5 :

2 : AggrType

type:
name: “ A”

visb: pub
class

Figure 2. Datrix Model of Example Source Code

list, 148 is the user defined function get . The first one
in the chain (node 9) is the default copy constructor. The
methods in the middle (elided) are the default constructors
and deconstructors. Only the get function has a body
(also elided). The rest of the graph represents the
signatures of functions that must be generated since the
definition is not provided in the example.

3 Transformation Using Union Schemas

This section discusses how CPPX transforms the initial
GCC graph to a Datrix graph.

3.1 Schema Transformation in Stages

CPPX’s translation task is a restructuring: that is, it
is supposed to be “semantics preserving” at approximately
the same level of abstraction. (The GCC model is at a
slightly lower level because of its goal of compilation.)

In general, a “semantics preserving” transformation
between schemas is a function which maps (instances of)
one schema to (corresponding instances of) the other
schema, such that the “semantics” is held fixed.

The semantics is held fixed in two senses. First, a

graph schema for representing facts about a program
defines a “view” of the program, in which facts of interest
are encoded and some uninteresting facts are ignored or
abstracted away. If P is the set of programs and S the set
of graphs, the view may be considered as an abstraction
function c : P -> S. In our case there are two schemas
Sinitial and Sfinal, and correspondingly two views cinitial and cfinal,
The required “semantics preserving transformation” ios a
function t : Sinitial -> Sfinal for which cfinal (p) = t (cinitial (p)) for
any program p. This just says that the initial view,
transformed, must be the final view.

The second sense of “fixed semantics”, when
transforming program schemas, comes from the source
completeness goal mentioned in the Introduction. From
any graph of a program we must be able to reconstruct
source, if not perfectly, then at least to the extent that the
reconstructed program has the same (operational)
semantics.

The transformation t is quite complicated to describe all
at once, and we have found it useful to factor it into stages
ti, pipelined together, such that t = tn-1 o ... o t1 o t0.
Doing so suggests that we need (at least conceptually)
many different intermediate schemas, one for each stage.
In practice we form instead a union schema : a single

4

namespace_decl0 : identifier_node1 :
strg: “ :: ”

name
type_decl2 :

dcls

identifier_node16 :
strg: “ b”

identifier_node4 :
strg: “ 1A”

mngl

 5 : record_type

name
type

type_decl87 :chan

name

size

flds

funcs

integer_cst7 :
hi:
lo:

0
32

 15 : integer_type

type_decl38 :

name
size
…

type

8 : field_decl

identifier_node3 :
strg: “ A”

name

integer_type17 :

type

size… chan

18 : type_decl
9 : function_decl

22 :
strg: “ _ZN1AaSERKS_”

identifier_node

identifier_node21 ::
strg: “ operator= ”

mngl
name

23 : method_type

25 : parm_decl

148 : function_decl

chan

type

args

min
…

max
…

nametype

name

type

42 : reference_type

43 : tree_list

retn

parmsidentifier_node48 :
strg: “ this ” name

49 : pointer_type

typechan

identifier_node63 :
strg: “ int ”

name
chan

refd

identifier_node34 :
strg: “ bit_size_type ”

size
…

size
…

ptd

5

…
65 : pointer_type

size
…

ptd

5

value

chan
…

…
chan

identifier_node107 :
strg: “ void ”

name

void_type68 :

nametype

identifier_node164 :
strg: “ get ”

name
166 : method_type

identifier_node165 :
strg: “ get ”

mngl

type

args body

……

retn

17

parms

…

Figure 3. Reduced GCC Model of Example Source Code

schema S capable of representing the views cfinal(p) ,
cinitial(p), and and required intermediate transformations as
well. Figure 4 shows the pipeline and requirements for
the intermediate transformations.

P

S S

cinitial
cfinal

t

S … S
t0 t1 tn-2 tn-1

…c1 cn-1

Figure 4. Union Schema Pipeline

3.2 Constructing the Union Schema

In constructing the union schema we have adapted a
technique [15] familiar to us from programming in the
transformational programming language TXL [10].

The purpose of the union schema is to support the
initial and final encoding, and to allow (and to a certain
extent direct) the construction of intermediate encodings,
so that the individual steps ti can be transformations from
S to S determined by ci = ti o ci-1. The first step in
constructing the union schema is to cast the initial and
final schemas into a common conceptual model. Next,
corresponding structures in each are identified, and the
resulting union schema is implemented as a data structure
(for CPPX, in C). Lastly, translation functions and
exchange-format programs are written to apply to
instances of the union data structure. Similar steps were
originally identified by Cordy for the closely related
“union grammar” technique [15]. We now examine each
of the steps in more detail.
3.2.1 Choose a common conceptual model. As
described above, for CPPX we had to do with:
1. The initial model, of GCC, implemented as C

structures and pointers, extended by wonderfully
intricate uses of the C macro facility, and documented
in English, and

2. the final model, the “Datrix” model, described by a
technical report [7], and partly formalized in TA [16].
The conceptual model of the GCC schema requires

entities (represented as structs) with entity attributes
(struct members), direct references to other entities
(pointers), and union types. Union types are implemented
both by systematic use of union types in C, and also in
other cases by means of the macro facility and naming
conventions. The use of pointers implies that
relationships are all cardinality “zero-or-one”: multi-
occurring relationships are encoded in the GCC model

using various kinds of linked lists. Figure 5 shows that
part of the GCC data structuring scheme which justifies
the graph in Figure 3. In this diagram, from which much
has been omitted, white-headed arrows indicate union
types (the arrow points from the union to the member),
black-headed arrow indicate pointers, and italic names
indicate simple attributes, nesting indicates structural
containment. Because this is all implemented in C,
necessarily the schema has been inferred, by hand, from
the code.

The conceptual model of the Datrix schema is that of
TA [16], requiring typed entities (represented as labeled
nodes in a graph) with simple-valued attributes, and typed
binary relationships (represented as labeled edges in a
graph), also allowed to have attributes. Relationships can
be constrained with respect to the type (label) of their
domain and codomain (source and target). (In the informal
model, but not in the schema, there are also cardinality
constraints, i.e. specifications of the allowed number of
instances of a relationship involving a particular entity.)
Figure 6 shows that part of the Datrix schema which
justifies the graph in Figure 2. In Figure 6 white-headed
arrows indicate inheritance (the arrow points at the
superclass) and black-headed arrows indicate possibly-
attributed relationships. Our Datrix schema was
transcribed almost directly from its highly-structured
documentation [7][8].
3.2.2 Identify corresponding structures. It is
apparent that the two conceptual models are similar in
spirit but by no means identical. For our purposes it
proved practical to use the TA concepts extended by
attribute values which are direct references to other
entities. Thus in the union model there are typically two
ways to represent a relationship: either with an explicit
TA-style edge, or with a reference-valued attribute.

The task of identifying corresponding structures is
fairly straightforward, but is delicate because it governs
the whole transformation process which follows.
Essentially the idea is to represent partial or incremental
results of the whole transformation by allowing
relationships in both “sides” of the union to involve
entities from either “side”.

For simple examples: the GCC entity function_decl
corresponds to the Datrix entity Function; the GCC entity
field_decl corresponds to the Datrix entity Object. In
these and similar cases the correspondence holds simply
because they are representing the same syntactic structure
in the source language C++.

For more complex examples of correspondence,
consider the relationship chan (=”chain”) in the GCC
schema, which serves as a general-purpose link between
tree nodes. With this relationship, any other relationship

5

can be made multi-occurring by chaining multiple
occurrences together. A typical example is the
relationship between an aggregate or record type and its
members. In the GCC schema this is indicated by
pointers “flds” and “funcs” from a record_type to the (first)
field_decl and to the (first) function_decl, which then are

linked to the remaining similar members by “chan”
pointers. This is convenient for the goal of the GCC
schema, namely processing during compilation. By
contrast, in the Datrix schema there is an ArcSon
relationship from AggrType to Identifier: and the ArcSon
relationship has an order attribute indicating sequence

6

tree_common

tree_node

chantype

integer_cst
hi
lo

identifier_node
strg

tree_type tree_decl

name

void_type

record_type

method_type

type_decl

field_decl

function_decl

reference_type

parm_decl

tree_list
purpose

value

mngl

namespace_decldcls

integer_type

name

type

size
size

flds

size

pointer_typeptd

refd

funcs

<anonymous union>

Figure 5. Partial GCC Schema

Scope

NameSpace

BuiltInType

ArcSon
order

Instance

Instance

RefersTo

ArcSon

ArcSon
order

ArcSon
order

Type Expression

Identifier
name
visb

AggrType
type

NameRef

ASGNode

CtrlStmt

Jump

Block

Object Function

Return

Figure 6. Partial Datrix Schema

within the aggregate. This is in keeping with the goal of
the Datrix schema, which is to show a structural view
suitable for high level analyses.

Figure 7 shows a portion of the union schema, in
which corresponding entity types and edge types are
indicated by thick lines. The meaning of the combined
schema is to relax the type constraints so that entities and
relationships can play a role specified for their
corresponding entities or relationships.

Figure 8 shows a portion of the example “in the
middle” of transformation. Here it is shown how the field
b of the class A has been converted to the Datrix schema,
and the corresponding edges have been converted from
“flds” and “funcs” to “ArcSon”. The class A itself and the
function members are still in the GCC form. The root of
the graph (the global namespace) has also been converted
to the Datrix schema as have the built in types (elliptical
nodes 68 and 17) and the edges connecting them. This
example therefore satisfies the union schema, but neither
the initial schema nor the final schema.

3.2.3 Build translation and output functions.
We discovered that there were three kinds of
transformation step for instances of the union schema:

1. simple replacement transforms
2. construction of parallel corresponding structures
3. filtering (garbage collection)

During transformation of a particular correspondence,
we found that in simple cases (e.g. Function =
function_decl) it is convenient to “replace” a node entry of
GCC type with the corresponding entry of Datrix type,
reusing the node directly. The advantage of doing so was
that all references to that entity elsewhere in the graph

would continue correct in the union schema, for they
would continue to refer to the corresponding structure.

The disadvantage of this replacement approach was that
it requires all the information in a node to be “converted”
at once, since it is otherwise lost when the node is
replaced. For more complex situations where it was not
practical to do this, we created a parallel structure instead.
A typical example was the list of actual parameters of a
call, which are linked together using “tree_nodes” in the
GCC model, but which must be formed into a subgraph
called an “actual function parameter list” in the Datrix
model. In the process the GCC nodes would be detached
from the root of the tree, and the graph would be filtered
afterwards, to remove nodes from the graph which are no
longer accessible from the root of the compilation unit.

4. The CPPX Implementation

The project ran for four months in the beginning of 2001.
Of this, the first month was spent planning the
transformation, modifying the GCC compiler dumping
routines and implementing the final output routines. The
remaining two and a half months were spent building and
testing the transformation routines.
The project has the following components:
1. A header file defining the binary union schema format

and utilities to read and write files containing individual
models.

2. Two replacement graph dumping files for the GCC
compiler and changes to the makefile for the compiler.

3. Two filters used for initial input conditioning and
garbage collection.

4. A number of individual transforms that change the

7

Type

record_type

void_type

AggrType

BuiltInType

integer_type

Object Function

Identifier

ArcSon
order

function_declfield_decl

tree_type

flds

funcs

Figure 7. Partial Union Schema

GCC schema to the Datrix schema.
5. Output generators that translate the binary

representation to one of three text representations: TA
[16], VCG [17] and GXL.

6. Utility functions used by all of the above.
7. A query program used to examine individual elements

of the binary files.
8. A driver program that coordinates most of the above

elements.
The output generators can output a TA, VCG or GXL

version of the final graph (in the Datrix schema) or the
output of any of the intermediate results (in the union
schema). Thus the CPPX generators can be used to
produce interchange formats that allow tools to operate on
graphs expressed in the GCC.

GXL output from the transformer has been
successfully checked against the GXL DTD definition
using rxp [18]. We have checked that the output of the
transformer matches the modified Datrix Schema using a
schema checker written in grok[19].

The CPPX software may be freely downloaded from
the web site swag.uwaterloo.ca/~dean/cppx .

6. Conclusions

During the last roughly ten years, a number of efforts
have produced analysis systems for languages such as
C++. Among the best known of these are CIAO [20],
Refine [21], Rigi [2], TXL [10][22], PBX [23] and
RMTool [24]. As well, large commercial organizations
such as IBM, Sun and Microsoft are increasing providing
open interfaces to, or open source for their compilers and
their IDEs. There are a number of ongoing efforts to
provide standard APIs or standare SEFs for such tools; see
the WoSEF for a survey of many of these efforts [25].

In our introduction we listed 8 goals. We examine at
each individually to see how close we came.
1. Open source. The source code can be freely downloaded

from swag.uwaterloo.ca/~dean/cppx.
2. Minimal resources and early delivery. The first

version of CPPX is available from mid-May 2001.
3. Minimal maintenance. The multiple transform

approach permitted the two developers to work quite
independently. This same architecture will permit on-
going distributed maintenance.

4. Standard SEF. The output of the extractor is in a

8

1 : NameSpace
name: “::”

 ArcSon (1)
ArcSon(2)

BuiltInType68 :
“ void ”name:

BuiltInType17 :
“ int ”name:

ArcSon(3)

name
type_decl2 :

identifier_noden4
strg: “1A”

mngl

record_type5 :

nametype

identifier_noden3
strg: “A”

Instance

n18 type_decl
n9 function_decl

22 :
strg: “_ZN1AaSERKS_”

identifier_node

identifier_node21 :
strg: “operator=”

mnglname

23 : method_type

25 : parm_decl

n148 function_decl

chan

type

args

name

type

42 : reference_type

43 : tree_list

retn

parmsidentifier_noden48
strg: “this” name

49 : pointer_type

typechan

refd

size
…

size
…

ptd

5

…
65 : pointer_type

size
…

ptd

5

value

chan
…

…
chan

identifier_noden164
strg: “get”

name
166 : method_type

identifier_noden165
strg: “get”

mngl

type

args body

……

retn

17

parms

…

 4 : Object
 name: “b”
 visb: pri

 ArcSon (1)

 ArcSon (2)

Figure 8. Partial Result in Union Schema

slightly modified version of the the Datrix model
encoded in GXL.

5. Deliver all semantic facts. The first version omits a
small set of features, but there is no obstacle to
including them over the following couple of months.

6. Source complete. Most of the source program (after
preprocessing) can be recovered from the CPPX output.
Those source aspects which cannot be recovered are
either unavailable from the initial GCC graph, or in
principle cannot be represented in the Datrix model.

7. Production quality. Parsing and semantic analysis is
done by the GCC compiler, and hence CPPX accepts
whatever GCC accepts. Since GCC is used for
production development, this goal is met to the same
extent. However, there are dialects of C++ which GCC
doesn’t compile.

8. Performance. Initial measurements suggest that
CPPX runs at the same speed, or somewhat slower
than, the production compiler.

Transformations on graphs are common in software
analysis tools. For example, graph transforms may be
used to raise the level of source facts to an architectural
level[7]. In many cases, translation between schemas is
one goal of the transform. Thus the union schema
approach has a great deal of potential for general use.

Acknowledgements.

The Consortium for Software Engineering Research
(CSER), which provided funding for much of the project.

References

[1] Ivan T. Bowman, Michael W. Godfrey, Ric Holt,
“Connecting Architecture Reconstruction Frameworks”,
Journal of Information and Software Technology, vol. 42,
no.2, pp. 93–104, 1999
[2] Hausi Müller, Mehmet A. Orgun, Scott R. Tilley, James S.
Uhl, “A Reverse Engineering Approach to Subsystem
Structure Identification”, Journal of Software Maintenance:
Research and Practice, 5(4), pages 181-204, December 1993.
[3] GXL Home page, http://www.gnupro.de/GXL/
[4] Ric Holt, Andreas Winter, Andy Schür, “GXL: Towards a
Standard Exchange Format”, Proceedings WCRE 2000
Working Conference on Reverse Engineering, Brisbane,
Australia, November 2000, pp. 162–171.
[5] GXL DTD available at http://www.gnupro.de/GXL.

[6] Bell Canada DATRIXTM Home Page, www.iro.umontreal.
ca/labs/gelo/Datrix

[7] Bell Canada, DATRIXTM Abstract Semantic Graph:
Reference Manual, version 1.4”, Bell Canada Inc., Montréal,
C a n a d a , M a y h 0 1 , 2 0 0 0 .
http://www.casi.polymtl.ca/casibell

/Datrix/refmanuals/asgmodel-1.4.pdf
[8] A. Hassan, R. Holt, B. Laguë, S. Lapierre, C. Leduc, “E/R
Schema for the Datrix C/C++/Java Exchange Format”, WCRE
2000: Working Conference on Reverse Engineering,
Brisbane, Australia, Nov 6, 2000.
[9] H. Fahmy, R.C. Holt, “Using Graph Rewriting to Specify
Software Architectural Transformations”, ASE 2000
Proceedings of Automated Software Engineering, Grenoble,
France, Sept 2000.
[10] J.R. Cordy, I.H. Carmichael, R. Halliday, “The TXL
Programming Language – Version 10”, Legasys Corporation,
Kingston, Canada, January 2000, 65 pp.
[11] T. W. Reps, T. Teitelbaum, The Synthesizer Generator,
Springer Verlag, 1989, pp. 317.
[12] L. Cooprider, The Representation of Families Software
Systems, Ph. D. Thesis, Carnegie–Mellon University,
Computer Science Department, 1979
[13] W. Tichy. Software Development Control Based on
S y s t e m S t r u c t u r e D e s c r i p t i o n, Ph.D. thesis,
Carnegie–Mellon University, Computer Science Department,
1980.
[14] R. Ferenc, “A Short Introduction to the Hungarian
Proposal for a Standard C/C++ Schema,” http://www.inf.u-
szeged.hu/~ferenc/research/HungarianSchemaShort.pdf.
[15] Cordy, J, R, “Cross Language Transformations in TXL”,
TXL Working Paper 4, 1995.
[16] Ric Holt, “An Introduction to TA”, University of
Toronto, Toronto, March 1997, available from: http://www-
turing.cs.toronto.edu/pbs/papers/ta.html
[17] G. Sander, “Graph Layout Through the VCG Tool,”
Graph Drawing, DIMACS International Workshop GD ‘94
Proceedings, R. Tamassia and G. Tollis, editors, Lecture
Notes in Computer Science 894, Springer Verlag, pages 194
– 205, 1995.
[18] RXP - an XMLParser available under the GPL, http://www
.cogsci.ed.ac.uk/~richard/rxp.html
[19] Ric Holt, “Structural Manipulation of Software
Architecture using Tarski Relational Algebra,” Working
Conference on Reverse Engineering, Honolulu, October,
1998
[20] Judith Grass and Yih-Farn Chen, The C++ Information
Abstractor”, The Second USENIX C++ Conference, April
1990.
[21] Reasoning Systems Inc., Refine User’s Guide, 1992
[22] J.R. Cordy, C.D. Halpern and E. Promislow, “TXL: A
Rapid Prototyping System for Programming Language
Dialects”, Computer Langauges, V16, N1, January 1991, pp.
97-107.
[23] Ric Holt, Software Bookshelf: Overview and Construc-
tion, Available at http://www-turing.cs.toronto.edu/pbs/pap
ber/bsbuild.html
[24] G. Murphy, D. Notkin, K. Sullivan, “Software Reflexion
Models: Bridging the Gap Between Source and High-level
Models”, Proceedings of SIGSOFT ‘95, pages 18-28, October
1995.
[25] WoSEF Home Page, http://www.cs.toronto.edu/~simsuz
/wosef/

9

