Using the CLICS clone detector and GUI
Synopsis

This document will describe how to detect and analyze code clones in a software system using the
CLICS clone detector and GUI. This process is broken into 4 steps:

1) Environment setup.

2) Clone detection.

3) Post-process code clones (filter and categorize).

4) Investigate and annotate code clones using user interface.

Note, throughout this document, shell commands will be provided as examples. Each command will
begin with “$>' indicating the shell prompt.

This is an initial draft of a help document. It does not yet contain documentation of all of the options
for the commands used here.

Step 1: Environment Setup

Part of the clone detection process is the extraction of code regions from within C/C++ source code.
These code regions include procedure bodies, macros, and data type definition such as unions and
structs. CLICS uses a modified version of ctags to do this and uses the environment variable
CTAGS_PATH to find the executable. Before running the clone detection, post-processing, or Ul steps
be sure to set the path to the modified ctags executable. For example, in bash you would export the
variable with the following command (assuming ctags-mod can be found in /ust/local/bin):

$> export CTAGS_PATH=/usr/local/bin/ctags-mod

Todo: mention Ilsedit needs to added to your path, mention where to get it.

Step 2: Clone Detection

Clone detection is comprised of three steps: building a list of source files, source code region
extraction, and running the clone detector. In the first step, we must construct a file containing a list of
source files, one per line. The files should be listed using their full path, not their relative path. This can
be conveniently done using find (newer versions of find support more advanced regex operators than
the example given here):

$> find /home4/cjkapser/Research/cases/pine -name “*.c*” >> pine-files
$> find /home4/cjkapser/Research/cases/pine -name “*.h*” >> pine-files

This file will now contain a list of the source files used to build pine. Note in the above example the full
path to the source directory is given as the path argument for find.

Next we must extract the regions (procedures, macros, etc.) from the source code. This is done using
the command “ExtractRegions.py'. In its typical usage ExtractRegions.py requires two options to be

specified: -o output_file and -f input_filelist. -o specifies the output file that will contain the extracted
regions, -f specifies the location of the list of files to extract regions from. Ex:

$> ExtractRegions.py -f pine-files -o pine-regions

Todo: document region file format.

Once this list of regions is extracted, we can start the clone detection:
$> clics_clone_detection -M 2304 -m 60 -o pine-clones -R pine-regions

This command takes several options. -M defines the approximate memory to be used to store the suffix
tree data structure (the core data structure for locating the code clones). With 4GB total RAM, 3 GB of
available RAM on a 32 bit OS, it is generally safe to use 2.25 GB for the suffix tree, leaving ample
room for opening files and search for clones. -m specifies the minimum number of lexical tokens that
must compose a match for it to be valid. The default is 30 tokens, the above example specifies a
minimum of 60 tokens. -0 specifies where to place the output of the clone detection process, the above
example places the clone output in pico-clones. -R specifies the input file where the extracted regions
from the previous step can be found. The complete option summary of clics_clone_detection is:

-p Parameterize the input (replace identifiers with placeholder and force a semi one-to-one
match to filter matches). [conflicts with -e and -r]

-r Use raw input, do not tokenize or parameterize. [conflicts with -e and -p]

-e Use tokenized input, do not parameterize. [conflicts with -p and -r]

-M Amount of memory to use for suffix tree.

-m Minimum size (in tokens) for an acceptable clone.

-0 Output file [must be specified].

-R Region file to use to split clones into regions (rather than allow them to cross multiple
regions. If not specified, command expects a file containing a list of source files as an
argument.

Todo: document clone file contents.

Step 3: Post-processing code clones (filter and categorize)

Once the code clones are detected they need to be filtered, categorized, and loaded into a postgresql
database. Ex:

$> ConvertToPostgres.py -d pine_clones_60 -f pine-clones

This command will create a database “pine_clones_60" and filter it with filtered and classified clones
from the set of clones found in the file “pine-clones'. The option -d specifies the database to create, -f
specifies the input file. The complete list of options taken by this command are:
[-h host -p port] [-u username] [-P] -d dbname -f filename
-h hostname of database server
-p port number the postgresql server is listening on
-u username to connect to database with

-P ask for a password before connecting
-d database name to create
-f file containing clones to be filtered and loaded into the database.

Todo: document the 6 filters, the categorization, and the database relations.

Summary of Steps 1, 2, and 3

$> #Set up environment
$> export CTAGS_PATH=/usr/local/bin/ctags-mod

$> # Make a list of files to detect clones
$> find /home4/cjkapser/Research/cases/pine -name “*.c*” >> pine-files
$> find /home4/cjkapser/Research/cases/pine -name “*.h*” >> pine-files

$> # Extract the region information from the files
$> ExtractRegions.py -f pine-files -o pine-regions

$> # Detect clones using region information
$> clics_clone_detection -M 2304 -m 60 -o pine-clones -R pine-regions

$> # Post process clones and load them into a database
$> ConvertToPostgres.py -d pine_clones_60 -f pine-clones

Step 4: Investigate and annotate code clones using user interface

Analyzing clones in software involves inspecting individual clones to manually filter false positives and
annotate valid clones. Both of these tasks are highly subjective, and the quality of the process depends
very strongly on an understanding of the software being analyzed. It is strongly recommended that
design documentation is reviewed and, if necessary, investigate/document the important data structures
and sub-sytems before beginning this step. The goal of this software review is to gain an understanding
the software system similar to that which you would need to maintain/enhance the software because the
decisions you make about code clones should be considered in this context.

Once you have an understanding of the software system, you can open the CLICS user interface with
the following command:

$> CLICS_GUL.py

File ‘Wiew

J SubSystem Distance Tax. \:

r:l Please enter connection info. E\
Host: 'swag
Port: 55432

” il Username: |cjkapser
armfuls :

® Good Password: | ©00000®
O Incidental

O Harmless l Ok " @ cancel l
0 Harmful

|
|
Database: |_pine_clones_3O |
|
|

Owverall Clone Scope
@® Function

O Code Fragment
Category
I | - |

(4]

Figure 1: Open Cloning Database

Open the code clone database you created earlier (during post-processing) using the File — Open DB
menu item. You are presented with a dialog (Figure). All fields are optional with the exception of
Database. Host is the name of the server hosting the postgresql database, port is the port postgresql is
listening on, database is the name of the database containing the clones, username and password are
the authentication credentials used to connect to the database. If you are running CLICS on the same
machine as the host database, you can often just input the database name.

The source code used for the analysis may is stored in the database, by default CLICS_GUI will use
this source to visualize the clones. The code is stored as a compressed blob to minimize bandwidth
usage. If you are connecting to your database over a standard ADSL connection (5SMbps/.6Mbps)
viewing the source for the clones should be relatively fast (most of the slowness will be associated with
the latency of the database queries themselves).

If you are using a slower network connection you may wish to have the source on your local file-system.
This is not what you want in most cases. However, to use use source code located on your local file-
system, un-check the File - Use source in DB menu item. If you are browsing the code clones on a
different machine from the one where the code clone detection was performed, you may need to adjust

the prefix of the file locations. This can be done using the menu item File - Change Source Dir
(Figure 2). The text shown in original path will be replaced by the text in new path. For example, if the
path the source files during detection was ‘‘/home4/cjkapser/Research/cases/pine/...” and the source
location on the machine running CLICS_GUI is “/home/cjkapser/Research/cases/pine” we can replace
the beginning of the path with the information shown in Figure 2. This step is required each time you
connect to a clone database.

File Wiew
J SubSystem Distance Tax. I:

~ Clones
~ Clones By Taxonomy and Generati
' Same File (19372)
~ Same Dir. Different File (15223)
=~ Function to Function (11342)
I Function Clones (952)
I Partial Function Clones (36
~ Cloned Function Body (556

[»
P 149(send_exit for pico:17
P 145/format message _p | Please enter the old and new source directory. EI
" i 1 Original path |',I’home4 |
Harmful? » '
® Good New path |/home _|
O Incidental
O Harmless l Ok l l ogancel l
O Harmful

Owerall Clone Scope
@® Function

O Code Fragment
Category =
|_ -]
Type

| =

Figure 2: Change Source Directory Prefix
The anatomy of the user interface

The user interface of CLICS provides several views of clones and variety of forms of querying to select
or find clones of interest. On the left hand side of the UI you will find tabs allowing you to browse
clones by: a simple taxonomy (SubSystem Distance Tax. tab), file-system (Files tab), query results
organized by taxonomy (Query tab), a randomly selected clone (Random tab), and by annotated clones
(Annotated tab). The rest of this section will discuss each of these tabs and the views of cloning they
provide. You will also notice on the bottom left a form that can be used to document selected clones.
You will see how to use this in the text that follows. The right hand side of the user interface changes
depending on the tab left tab you have currently selected.

| FEile Wiew

19259 free_earb(&earb); B
19260 iflnick)

19261 fs_givellvoid **)&nick);
—k—142/get_reply_data:148/role_config_edit screen 19262 iflcomment)
Hb—144/rd_write_metadata:148/role_config_edit_scr|[||[19263 fs_givellvoid #*)&comment);
—b—145/format_header:148/role_config_edit_screen || || L9264 n‘(to_pgt}

19265 free list_array(&to pat);

19266 iflfrom_pat)
—+—148/role_config_edit_screen:165/init_keyword_li|||| [g257 free_list_array(&from_pat);

J SubSystem Distance Tax. Files | Query | b

T lalnew_Inall IMess: 145/ role CONNg edlt_SCreell

—148/role config_edit_screen:165/parse_action_sl

=—148/role_config edit_screen:152f/ab compose_in|||| 19268 if(sender pat)
19258-19262:3877-3883 19269 free_list_arra}f(&sender_pat); |I
19270 iflcc_pat)
19286-19290:3877-3883 19271 free_list_array(&cc_pat);
19286-19202:3677-3663 19272 iflrecip_pat)]

19290-19284:3877-3683 1023732 freo lict arrowlBiracin math: _J:J
LI | =

15292-19296:3577-3883 Eil i i i i
/home/cjkapser/Researchfcases/pine/pined.64/pine/other.c r

Harmful?

: 3871 else{ (=]
O Good 3872 role = (ACTION_S *)fs_get(sizeof(*role));
® [ncidental 3873 memset({void *)role, 0, sizeof(*role));
3874 role-=nick = cpystr{"Default Role"):
O Harmless 3875 ¥
A 3876)
O Harmful 2577
Overall Clone Scope 3878 compose_mail(addr, fcc, role, NULL, NULL):
— . 3879
€ - 3880 if(addr)
@ Code Fragment 3881 fs_givel(void **)&addr);
3882
Category 3883 iflfec) |
: 3884 fs_givellvoid **)&fcc);
|Templating -] b
Type 3886
: 3887
Idioms [7] 3388
Comments 3889 * Export addresses into a file.
3890 *
Essentially 3891 * Args: cur_line -- The current line position (in global display list)
unavoldable 3892 * of cursor
clones - no useful 3893 * command_line -- The screen line on which to prompt
ashetracstinn b 3894 *

[,

2205 * Raturne . 1 if the avnnrt ic dana

o

i

Figure 3: A clone selection in the subsystem distance taxonomy.

The default tab is the Subsystem distance taxonomy tab. This tab allows you to browse clones according
to an automatic classification, described in [1]. The current implementation is not complete (in the
middle of refactoring). See the tool for current level of implementation. To navigate clones in this tree
select nodes in the tree. Each node represents a level in the taxonomy, indicated by the name of the
node in the tree, until you reach a set of nodes labeled with the format “integer/string:integer/string”
(ex. 148/role_config:152/ab_compose). This indicates you have hit the end of the categorization for this
sub-tree, and the children are now Regional Group of Clones (RGCs). This is a set of clones that
comprise the cloning between two regions. In Figure 3, on the left we see a RGC that has been
expanded and one of the clones has been selected. On the lower left you can that the type of cloning
this RGC contains has been filled in. The basis for the categories, harmfulness, and scope is
documented in [2]. To commit annotations to the database, simply fill them in and select “Submit”.

On the right, the selected region is show in red text, and the selected clone is shown in yellow and green
highlights. The highlighting provides an indication of overall clone similarity by illustrating the simple
diff of the tokens of the two clones. Yellow highlighting indicates the tokens in the clones are the same,

green indicates the tokens are different. This highlighting can be applied to the entire region if you wish
to see the longest common subsequence between the regions. Simply right click on the TEXT of one of
the regions and select “Diff regions” from the menu that will pop-up. You will also notice in Figure 3
that some of the text is highlighted in gray with black text. This indicates there are clones between the
two files that are not part of this RGC. This is intended to provide information about the degree of
cloning between the two files: scrolling through the two files will show more highlighted text. The
reader should also node that each level of the tree is annotated by an integer “(integer)”. This integer
indicates the number of clones contained in the subtree of each node.

one 7 0 e [=][=]x]

Eile \iew

19258 free earb(&earb);
19260 if(nick)

19261 fs_give((void **)&nick);
——142/get reply_data:148/role_config_edit_screei¥| o262 iflcommentl

3

j SubSystem Distance Tax. Files| Query

L4l New_Inall Mmess:145/Tole COoNIlg_ edit SCree

——144jrd_write_metadata: 148/role_config_edit_s¢ ||| 19263 WO Show Directly Related » |WRETIEL
—b—146/format._header:148/role_config_edit_scree igg:; n‘f(to_plgt: Diff Regions Type
: : ree_lIst_armayioso_pacr, i
S . Line
148role_config edit screen:165/parse_action 19266 ff(from_pat)
——148/role_config_edit screen:165/init_keyword || || (o257 free_list_array(&from_pat):
=—148/role_config_edit_screen:152/ab_compose i ||| 19268 if(sender_pat)
19258-19262:3877-3883 19269 free_list_array(&sender_pat):
] 19270 if(cc_pat)
19266-19280:5677-5665 19271 free_list_array(&cc_pat);
19288-19202:3877-3883 19272 if(recip_pat)
19290-192904&3877-3883 G272 froo lict arrowlfiracin nath:
L |
19292-19296:3877-3563 = , , , ,
2] [e] /home/cikapser/Research/cases/pine/pined.64/pine/other.c
o
garmful. 3871 elseq
® Good 2872 role = (ACTION_S *)fs_get(sizeof(*role));
O Incidental 3873 memse_t((vmd #)role, 0, sizeof(*role));
B 3874 role-=>nick = cpystr("Default Role");
O Harmless 3875 }
3876 }
O Harmful .
Overall Clone Scops 3878 compose_mail(addr, fec, role, NULL, NULL);
. 3879
()]
® Function 3880 if{addr)
O Code Fragment 3881 fs_givellvoid **)&addr);
3882
Category 3883 iflfec)
| Bl 3884 fs_givellvoid **)&fcc);
3885 }
Type 3886
3887
| Bl 3888 j*
Comments 3889 * Export addresses into a file,
3800 *
3891 * Args: cur_line -- The current line position (in global display list)
3892 * of cursor
3893 * command_line -- The screen line on which to prompt
3894 *
- 2005 % Baturne .. 1 if tha svnnrt ic dana
’

| |
Figure 4: Query for related clones.

If you wish to see clones that are related to RGC you are currently viewing you can ask to see all clones
that occur in one of the two regions. Right click on the text of interest and select one of the sub-menu
items under the “Show Directly Related” pop-up menu item (seen in Figure 4). The three choices are
regional, type, and line. Selecting “Regional” will return all clones that have one segment in the
selected region. Selecting “Type” will return all clones that have one segment in the selected region and

are of the same type you are currently viewing. Selecting “Line” will return all clones that have one
segment covering the line you right-clicked on. In the past you could also make similar queries about
clones using transitive closure, this feature is currently being reimplemented. Figure 5 depicts the
results of selecting “Line” in Figure 4. The results, organized by the same taxonomy used in the first
tab, are shown in the Query tab. This tree has the same behavior as described for our first tab.

|Ei|e View
. . . . L9258 free_earb(&earb); [
SubSystem Distance Tax. ‘ Files Query L i53e0 HOED
A Cl0nES| 19261 fs_givel(void *+)&nick):

19262 iflcomment)

Clones By Taxonomy and Generation (148 ;)
v v (146) 19263 fs_givellvoid #)&comment);

= —Same File (3) 19264 if(to_pat)
=—Function to Function (8) 18265 free_list_array(&to_pat);
Cloned Blocks (8) 189266 iflfrom_pat)

19267 free_list_array(&from_pat);

152/edit_entry:152/ab compose internal (6
fecit_entry:152/ab_compose_ (8) 18268 if(sender_pat)

152/ab_modify_abook_list:152fab_compose_im| 16269 free_list_array(&sender_pat); |I
152/ab_compose_internal:152/prepare_abe_fo1 ||l 1o270 if(cc_pat)
Lh—Hetrogeneous (1) 19271 free_list_array(&cc_pat);
= Same Dir. Different File (130) 19272 ff(recip_pat) i
@272 fraa lict arraulfrarcin nat): L=l
—Vl—Functic:n to Function (122) [[—— {xl
fhome/cjkapser/Research/cases/pine/pined.64/pinefother.c r
Ijlar'mful? 3871 else{ (=]
® Good 3872 role = (ACTION_S *)fs_get(sizeof(*rale));
O Incidental 3873 memselt[(void *)role, 0, sizeof(*role));
3874 role-=nick = cpystr("Default Role"):
O Harmless 3875 1
o 3876 T
O Harmful 2877
Overall Clone Scope 3878 compose_mailladdr, fcc, role, NULL, NULL);
. g 3879
© P 3880 if(addr)
) Code Fragment 3881 fs_givel(void #*)&addr);
3882
Category 3883 if(fecc) “
| B| 3884 fs_give((void **¥)&fcc);
3885 }
Type 3886
3887
| B| 3888 *
Comments 3889 * Export addresses into a file.
3800 *
3881 * Args: cur_line - The current line position (in global display list)
3802 * of cursor
3803 * command_line -- The screen line on which to prompt
3894 * HL|
2005 % Datirne .. 1 if tha svnnrt ic dnna L=l

oy ™
_‘

| 7
Figure 5: Result of Directly Related -> Line query.

The clone detection method used by CLICS often contains false positives. These can be removed from
the database as you discover them. Simply select the clone that is a false positive and then right click on
it. A pop-up menu will appear (Figure 6). To remove all clones in the clone group, select “Remove
Group of Clones”. To remove an individual clones, select “Remove Clone”. Bug: Clones are not being
recategorized after removing an individual clone. To be fixed.

: . [=l[aiix]

File Wiew
: : 4107 char *scheme = NMULL, *net = NULL, *path = NULL,
4 13
J SUbS_y_?_Ee__Ul“]:_)_I?FEI_IlC_:_e“ T?_)E'_ L RIES ‘ M 4108 *parms = MULL, *guery = NULL, *frag = NULL,
) 4109 *base_scheme = NULL, *base_net_loc = MULL,
[~ S - — —
Cloned Blocks (940@) ﬂ 4110 *base path = NULL, *base_parms = NULL,
—=—188&/html_a_relative:165/data_for_patline (58) 4111 *base_query = NULL, *base_frag = NULL,
——4106-4113:7629-7636 4112 *rel_scheme = NULL, *rel_net_loc = NULL,
——4106-4113:7630-7636 4113 #rel_path = NULL, *rel_parms = NULL,
4106-41 1Bamenn 2 =nm = ii; *rel_query = NULL, *rel_frag = NULL;
Remowve Group of Clones
4106-41 Remove Clone 4116 /*Rough parse of base URL */
——4105-41 4117 rfc1808_tokens(base_url, &base_scheme, &base_net_loc, &base_path,
——4108-4113:7531-7639 4118 &base_parms, &base_query, &base_frag);
- 4106-4113:7632-7640 S _
4120 *Rough parse of this URL ¥/
4106-4113:7632-7640 A171 Fr1ang tolanclral ol &iral cchama firal nat lae Siral nath
—4106-4113:7532-7541 =
[——] || /home/cjkapser/Research/cases/pine/pined.64/pine/filter.c
o
Harmfult 7631 *news_pat = NULL, *from_pat = NULL,
® Good 7632 #sender_pat = NULL, *cc_pat = NULL, *subj_pat = NULL,
O Incidental 7633 *arb_pat = NULL, #fldr_type_pat = NULL, *fldr_pat = NULL,
) 7634 *afrom_type_pat = NULL, *abooks_pat = MULL,
O Harmless 7635 *alltext_pat = NULL, *scorei_pat = NULL, *recip_pat = NULL,
7636 +keyword_pat = NULL, *charset_pat = NULL,
O Harmful - =
7637 *hodytext_pat = NULL, *age_pat = MULL, *sentdate = NULL,
Overall Clone Scope 7638 *size_pat = Nlj'—'—:
= : 7639 *category_cmd = NULL, *category_pat = MNULL,
(- —_ |
© Function 7640 *category_lim = NULL,
O Code Fragment 7641 *partic_pat = NULL, *stat_new val = NULL,
7642 *stat_rec_wal = NULL,
Category 7643 #stat_imp_val = NULL, *stat_del val = NULL,
| Bl 7644 *stat_ans_val = NULL, *stat_8bit_val = NULL,
7645 *stat_born_val = NULL, *stat_boy wal = MULL,
Type 7646 *from_act = NULL, *replyto_act = NMULL, *fcc_act = NULL,
7647 *sig_act = NULL, *nick = NULL, *templ_act = NULL,
| Bl 7648 #itsig_act = NULL, *cstrm_act = NULL, *smtp_act = NULL,
Comments 7649 i‘inntp_act = NULL., *comment = NUITI._,
7650 *repl_val = NULL, *forw_wval = NULL, *comp_val = MULL,
7651 *incol_act = NULL, *inherit_nick = MULL, *score_act = MNULL,
7652 *sort_act = MULL, *iform_act = MULL, *start_act = NULL,
7653 #folder_act = MULL, #ilt_ifnotdel = NULL,
7654 #ilt_nokill = NULL, *filt_del_val = NULL,
TREE A#filt imam wal — w1 #flE sme wal = ML

I o

[home/cjkapser/Research/cases/pine/pined.64/pine/strings.c

| 7
Figure 6: Menu to remove clones.

Browsing the clones found in the taxonomy can be a good way to get acquainted with the types of
cloning that occur within a software system, but an investigation of the clones within the context the
software organization is necessary if one is to understand how clones have been used. There are two
mechanisms for exploring clones in relationship to the source code organization. The first is the “Files”
tab (Figure 7). The “Files” tab provides several useful statistics about cloning within and going out of
software entities (sub-systems, files, and regions). Figure 7 shows the cloning statistics for the top level
source directory pine4.64. On the left is a tree representing the source hierarchy of pine. On the right
we can see the grid of statistics for pine4.64 (selected on the left). The grid on the left can be sorted
according to any column (done so by selecting the column header). Using the source tree and the stats
grid, the user can find cloning of interest (example: Figure 7 shows that 46.8% of the clones in pine
occur in the imap subsystem while imap only contains 28.6% of the lines of code).

| File View

*‘ SubSystem Distance Tax. | Files t Stats | Relations
v Files 3 P # Int R 4 0 # Fxt R # F32 o ercentade o one ntofline

@PROGRAM ins cSubSyst 747 a2 54.029618 57.658513

homed imap cSubSyst 10845 21931 1034 2119 46.862822 28.685179

cjkapser pico c3SubSyst 666 1198 27 49 2.429852 7.893043

Lw—Research :

contrib |cSubSyst 81 171 233 359 1.032736 1.655205

Ca;en Se doc cSubSysh 2 2 9 24 0.050663 3.067369

= [Ny build.cmccFile 0 0 0 0 0.000000 0.042691

H—build.cmd
—contrib

H—doc

=—imap
H—docs
F=—src
—ansilib
——c-client
b—charset
——dmail
—imapd
——ipopd
——mailutil
~b—mlock
——mtest
—>—aosdep
—k—tmail
—b—tools
H—pico

“b—pine

LT — — — ———— 0|

|
Figure 7: Statistics of cloning by software entity.

In Figure 7 the grid has been sorted by “Percentage of Clones”. The stats grid contains the following
columns:

1. Label: the name of the system entity.

2. Type: Defines the system entity type. Can be cSubSystem, cFile, cFunction, or cObject.
cSubSystem indicates the system entity is a subsystem in the source code. cFile indicates the
system entity is a source file. cObject indicates the system entity is a data type definition in the
source code (such as a struct, union, enumerator, etc) and cFunction indicates the system entity
is a function or procedure.

3. # Int. RGCs: The number of RGCs with both regions occurring within the system entity
(internal RGCs).

4. # Int. Clones: The number of clones with both segments occurring within the system entity
(internal clones).

5. # Ext. RGCs: The number of RGCs with only one region occurring within the system entity
(external RGCs).

6. # Ext. Clones: The number of clones with one segment within the entity and the other segment
occurring outside of the entity (external clones).

7. Percentage of Clones: The percentage of clones with at least one segment occurring within the
system entity.

8. Percent of Lines: The percentage of lines of code that occur within the system entity.

9. Total Lines Cloned: The number of lines cloned (currently disabled).

Using the above information you can find areas with a high density of clones (such as when a
disproportionate number of clones occur in a relatively small number of lines of code), possible false
positives (such as occurs in relatively simple code, indicated by a large number of clones by few RGCs),
and cloned subsystems due to forking (indicated by high numbers of external clones). If you find a

system entity of interest and wish to see the clones within a system entity, right click on the system
entity in the file tree, and select one of the menu items in the pop-up menu (Figure 8). The menu items
“Clones within Entity” and “Clones Going Out of Entity” will display the internal clones and external
clones of the system entity in the Query tab. “Show Internal Summary” provides a summary of internal
cloning of the selected system entity. “Remove Internal Clones” will remove all clones (permanently)
from the analysis.

If you find a system entity that you wish to remove from the analysis (perhaps it has so many clones it
skews the results) you can exclude it from the analysis. “Exclude Entity” will exclude the entity from
the analysis temporarily (the entity can be included using a similar pop-up menu). This action will only
be applied after first selecting “Exclude Entity” and then applying the change using “Apply Changes”.
After excluding the entity, it will appear italicized and underlined as “charset” appears in Figure 8.

one A ; - [=][=[x]
File \iew
j Files Query Random |* | Stats | Relations
L pine | FrLENAME [15 pE [%
|—V—pine4,64 h:::rne-%:ka ums: cSubs
> pbuild.cmd fhomed/glka amiga cSubS 691 1385 3720
> contrib /homed/cjka nt cSubs 306 656 2714
——doc fhomedfcjka os2 cSubSsS 225 517 2220
~=—imap fhomedfcjka'dos cSubS 62 101 1156
~+—docs /nomed4/cjkatops-2(cSubs 15 19 147
Tjﬂsihb fnomed/cika'wce cSubs 13 23 351
b cclient fhomed/cika vms | cSubS 10 11 274
b harset fhomedfcjka mac | cSubS 9 13 189
——dmail
——imapd
H—ipopd
—b—mailutil
——mlock
——mtest

Exclude Entity

Clanes Within Entity
Clones Going Qut Of Entity
Show Internel Summary
Remove Internel Clones

Apply Changes

——unix
——vms
——wce
—b—tmail
—k—tools
——pico
—b—pine

| Y
Figure 8: System entity pop-up menu.

Information about the external clones (clones going out of a system entity) can be found in the
“Relations” tab in the right hand side of the Files view (shown in Figure 9). The Relations tab enables
the user to walk through the another file tree to gain information about the degree of cloning between
the system entity selected in the left tree and the system entity selected in the left tree. Figure 10 shows
that imap and contrib share 290 clones and imap and pine share 1829 clones. To view the clones
comprising this relationship, right click on the system entity of interest and select “Show Relation”
from the pop-up menu (Figure 10), the results will be shown in the Query tab.

|Ei|e View
j Files Query Random

> Files > Files |FIl ENAME
@PROGRAM LL@PROGRAM homed/cjkalcontrib
|—V—home4 |—"—home4 fhomed/cika pine cSubS 844 1829
cjkapser cjkapser
LV—Research LV—Research

|—V—cases |—V—cases
pine pine

L~ pinea.sa
——build.cmd —b—contrib
——contrib —b—pine
——doc
——docs
—=—src
——ansilib
——c-client
——charset
——dmail
——imapd
——ipopd
——mailutil
——mlock
——mtest
——osdep
—b—tmail
——tools
——pico
—>—pine

> | Stats | Relations

| 7.
Figure 9: Relations tab.

one A 0

File Wiew

"

Files *» | Stats | Relations

Query ‘ Random

~—Files
@PROGRAM

|—"—home4

gjkapser

~—Files
@PROGRAM
Lv—home-'-l
gikapser
Research Research

|A?—cases |A?—cases
pine pine

|—"—pine4.64 |—V—pine4.64
——build.cmd i
——contrib
——doc
——docs
—=—8IC
——ansilib
——c-client
———charset
——dmail
——imapd
——ipopd
—b—mailutil
——mlock
——mtest
——osdep
——tmail
——tools
——pico
——pine

|FiENAME [LoD
homed/gikalcontrib

J/homed/cjka pine

cSubS 844

Figure 10: Show relation pop-up in relations tab.

To document:
- summary panel
— Isedit view

Appendix 1. ExtractRegions.py

ExtractRegions.py generates a list of code regions extracted from a set of input files. It uses a modified
version of ctags to extract this information.

Extract Regions File Format:

There are two sections to the output of ExtractRegions.py:
1. Files, and
2. Regions.

Each section is delimited by begin{} and end{} statements. Ex. The Files section looks something like:

begin{files}

0 17 /home/cjkapser/Research/cases/pine4.64/pico/buffer.c
1 12 /home/cjkapser/Research/cases/pine4.64/pico/edef.h

2 2 /home/cjkapser/Research/cases/pine4.64/pico/resource.h
3 26 /home/cjkapser/Research/cases/pine4.64/pico/word.c

4 3 /home/cjkapser/Research/cases/pine4.64/pico/window.c
5 69 /home/cjkapser/Research/cases/pine4.64/pico/browse.c
6 34 /home/cjkapser/Research/cases/pine4.64/pico/msdlg.c
7 49 /home/cjkapser/Research/cases/pine4.64/pico/basic.c
8 43 /home/cjkapser/Research/cases/pine4.64/pico/pico.h

9 6 /home/cjkapser/Research/cases/pine4.64/pico/efunc.h
end{files}

and the regions section looks like:

begin{regions}

Y, 1 1 rcsid 0 (0]

m 2 38 MiscRegion 0] 1 0

p 39 41 sgetlin 2 (0]

m 42 54 MiscRegion 1 3 0

f 55 66 anych 4 0] 56

m 68 76 MiscRegion 2 5 0

f 77 137 bfind 6 0 80

m 139 148 MiscRegion 3 7 0

f 149 178 bclear 8 0 151
m 181 187 MiscRegion 4 9 0

f 188 264 packbuf 10 0] 192
m 267 270 MiscRegion 5 11 0

f 271 323 readbuf 12 (0] 273
m 326 330 MiscRegion 6 13 0

f 331 366 sgetline 16 0 336
end{regions}

The files section.

Each line of the files section contains three sections:
- fileid,
— number of lines in the file, and
- file path.

The file id is a unique numeric identifier, used to uniquely identify and cross reference each file in the
regions section.

The number of lines in the file represents the number of lines in the text file (all lines, including
comments, white space, etc).

The file path is the path used by the extractor to read the file.

The regions section.
Each line in the regions section contains the following fields:
1. the region type,
2. the starting line of the region,
3. the ending line of the region,
4. the name of the region,
5. the region id, and
6. the file id of the region.

Regions representing methods, procedures, and functions include an additional field denoting the line
number of the opening brace.

Region types are taken directly from the ctags output. They are a single character. For C/C++/Java, the
following regions types are used:

- g enumerator name

- d: macro

- n: namespace

- c:class

- f: function

- p: prototype definition

- s:struct

- t: type definition

- u:union

- e: enumerator

- X:extern

- v: variable definition

In addition to the ctags region types, the extraction script adds a misc region to ensure all lines of the

file are covered:
- m: miscellaneous region.

Appendix 2. clics_clone_detection

Using a suffix tree based string searching/matching algorithm, the clics_clone_detection program
provides a list of common substrings found in a set of input files.

There are 2 sections in the output file:
1. the files list, and

2. the clone pair list.

The output format was originally very similar to the CCFinder output, but has evolved a little over time.
The sections are delimited by start{ } and end{} lines. For example, the files section looks like:

start{files}

0 367 /home/cjkapser/Research/cases/pine4.64/pico/buffer.c

1 181 /home/cjkapser/Research/cases/pine4.64/pico/edef.h

2 134 /home/cjkapser/Research/cases/pine4.64/pico/resource.h

3 644 /home/cjkapser/Research/cases/pine4.64/pico/word.c

4 60 /home/cjkapser/Research/cases/pine4.64/pico/window.c

5 2586 /home/cjkapser/Research/cases/pine4.64/pico/browse.c

6 1003 /home/cjkapser/Research/cases/pine4.64/pico/msdlg.c

7 878 /home/cjkapser/Research/cases/pine4.64/pico/basic.c

8 605 /home/cjkapser/Research/cases/pine4.64/pico/pico.h

9 342 /home/cjkapser/Research/cases/pine4.64/pico/efunc.h

10 188 /home/cjkapser/Research/cases/pine4.64/pico/osdep/os-mnt.h

11 173 /home/cjkapser/Research/cases/pine4.64/pico/osdep/os-gen.h

12 179 /home/cjkapser/Research/cases/pine4.64/pico/osdep/os-nto.h

13 174 /home/cjkapser/Research/cases/pine4.64/pico/osdep/os-gsu.h

14 173 /home/cjkapser/Research/cases/pine4.64/pico/osdep/os-mct.h
end{files}

start{clones}

3 166, 0,4922 184,36, 5546 3 200,0,6063 218,36,6687 \
115 0.026087 0.076923

3 166, 0,4922 180, 0,5333 235,0,7267 249,0,7673 \
77 0.012987 0.040000

3 181,22,5374 189, 47,5817 250,19, 7711 258,47,8079 \
80 0.000000 0.000000

3 200, 0, 6063 214,0,6474 235,0,7267 249,0,7673 \
77 0.000000 0.000000

3 432,21,12880 453, 0,13396 508,34,14994 524,0,15357 \
60 0.083333 0.227273

5 492,18,14069 513, 0,14553 514,16,14571 535,0,15071 \
141 0.035461 0.096154

5 503, 34,14344 511,0,14534 1597,18,39342 1605,0,39544 \
61 0.016393 0.041667

5 503, 38,14348 515,19, 14610 630,15,17328 644,19,17574 \
72 0.027778 0.076923

5 504,28,14378 517,12,14651 598, 23,16542 611,17,16806 \
69 0.072464 0.200000

5 504,28,14378 515,19,14610 661,23,17951 672,19,18158 \
63 0.047619 0.130435

end{clones}

* Note, in the above example the \ indicates a line wrap.
The files section.

Each line in the files section contains 3 fields:
1. fileid,
2. file length in lines, and
3. file path.

File id is a unique numeric identifier used to reference a file in the clones section.

File length in lines indicates the number of lines in the input file (including empty lines and
documentation).

File path indicates the path used to read the file.
The clones section.

Each line in the clones section describes a single clone pair. For the clics_clone_detector a clone pair is
composed of two segments of code. Each line can be decomposed into three sections:

1. Segment 1,

2. Segment 2, and

3. clone summary.

3 200,0,6063 218,36,6687 115 0.026 0.076
Segment 2 Clone summary

Each segment contains the following fields:
1. file id — the file the segment occurs in;
2. segment start — the start line, start column, and start character;
3. segment end — the end line, end column, and end character.

The clone summary includes:
1. clone length - the length of the clone, in tokens,
2. total difference - ratio of differences to clone length between the segments using all tokens as a
comparison,
3. identifier difference - ratio of differences to number of identifiers in the segments using only
identifiers in the comparison.

References:

(1) "Improved Tool Support for the Investigation of Duplication in Software", by Cory Kapser and
Michael W. Godfrey. Proc. of the 2005 Intl. Conference on Software Maintenance (ICSM-05),
Budapest, Hungary, 25-30 Sept 2005.

(2) “*Cloning Considered Harmful' Considered Harmful: Patterns of Cloning in Software", Cory J.
Kapser and Michael W. Godfrey. Extended version of WCRE-06 Best Paper. Accepted to appear
in Empirical Software Engineering (Springer).

