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Abstract

This paper describes a collection of algorithms that we

developed and implemented to facilitate the automatic

recovery of the modular structure of a software system

from its source code�

We treat automatic modularization as an optimization

problem� Our algorithms make use of traditional hill�

climbing and genetic algorithms�

Keywords� Clustering� Reverse Engineering� Soft�

ware Structure� Optimization� Genetic Algorithms�

�� Introduction

Understanding the intricate relationships that exist
between the source code components of a software sys�
tem can be an arduous task� Frequently� this problem
is exacerbated because the design documentation is out
of date and the original system architect is no longer
available for consultation�

With no mechanism for gaining insight into the sys�
tem design and structure� the software maintenance
practitioner is often forced to make modi�cations to
the source code without a thorough understanding of
its organization� As the requirements of heavily used
software systems tend to change over time� it is in�
evitable that continually adopting an ad hoc approach
to maintenance will have a negative e�ect on the overall
modularity of the system� Over time� the system struc�
ture may deteriorate to the point where the source code
organization is so chaotic that it needs to be radically
overhauled or abandoned�

More than ever� software engineers rely on notations
and tools to help them cope with the complexity of
the structure of large software systems� One way pro�
grammers cope with structural complexity is by group�
ing �clustering� related procedures and their associated
data into modules �or classes��

While modules do much to improve software devel�
opment and maintenance� they are insu�cient for sup�
porting the design and ongoing maintenance of large
systems� Such systems often contain several hundreds
of thousands of lines of code that are packaged into a
large number of cooperating modules� Fortunately� we
often �nd that these systems are organized into identi�
�able clusters of modules� called subsystems� that col�
laborate to achieve a higher�level system behavior�	
�

Unfortunately� the subsystem structure is not ob�
vious from the source code structure� Our research
therefore proposes an automatic technique that creates
a hierarchical view of the system organization based
solely on the components and relationships that exist
in the source code� The �rst step in our technique is to
represent the system modules and the module�level re�
lationships as a module dependency graph� We then
use our algorithms to partition the graph in a way
that derives the high�level subsystem structure from
the component�level relationships that are extracted
from the source code�

Fully automatic modularization techniques are use�
ful to programmers who lack familiarity with a sys�
tem� These techniques are also useful to system archi�
tects who want to compare documented modulariza�
tions with the automatically derived ones� and possi�
bly improve the design by learning from the di�erences
between the modularizations�

Figure � shows the architecture of our automatic
software modularization environment� The �rst step
in the modularization process is to extract the module�
level dependencies from the source code and store the
resultant information in a database� We used AT�T
s
CIA tool��
 �for C� and Acacia��
 �for C��� for this
step� After all of the module�level dependencies have
been stored in a database� we execute an AWK script
to query the database� �lter the query results� and pro�
duce� as output� a textual representation of the module
dependency graph� Our clustering tool� called Bunch�
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Figure 1. Automatic Software Modularization Environment

applies our clustering algorithms to the module depen�
dency graph and emits a text�based description of the
high�level structure of the systems organization� We
then use the AT�T dotty visualization tool��
 to read
the output �le from our clustering tool and produce a
visualization of the results�

The structure of the remainder of this paper is as
follows� Section � presents a case study that illus�
trates the e�ectiveness of our automatic software mod�
ularization technique� Section 	 develops the perti�
nent aspects of our technique by formally quantifying
inter�connectivity� intra�connectivity and modulariza�
tion quality� Section � presents the algorithms we have
implemented for clustering software components� Sec�
tion � is dedicated to describing the operation and
performance of our modularization tool� Section �
presents related research in the area of software modu�
larization� We conclude by outlining the research bene�
�ts and limitations of our work along with a discussion
of our future plans to improve our technique�

�� An Example

Figure � shows the module dependency graph of a
C�� program that implements a �le system service� It
allows users of a new �le system nos to access �les from
an old �le system oos �with di�erent �le node struc�
tures� mounted under the users
 name space� Each
edge in the graph represents at least one dependency
relationship between program entities in the two cor�
responding source modules �C�� source �les�� For
example� the edge between oosfid�c and nos�h is es�
tablished due to �� dependency relationships from the
former to the latter�

The program consists of ����	� lines of C�� code�
not counting the system library �les� The Acacia
tool parsed the program and detected ��	 C�� pro�
gram entities and ��� dependency relationships be�
tween them� Note that containment relationships be�
tween classes�structs and their members are excluded
for consideration in the construction of module depen�
dency graphs�

Even with the module dependency graph� it is not
clear what major components are in this system� Ap�
plying our automatic modularization tool to the graph
results in Figure 	 with two large clusters and two
smaller ones in each� After discussing the outcome of
our experiment with the original designer of the sys�
tem� several interesting observations were made�

�� It is obvious that there are two major components
in this system� The right cluster mainly deals with
the old �le system while the left cluster deals with
the new �le system�

�� The clustering tool is e�ective in putting strongly�
coupled modules like pwdgrp�c and pwdgrp�h in
the same cluster even though the algorithm does
not get any hints from the �le names� Such cluster�
ing is consistent with the designer
s expectation�

	� On the other hand� just by looking at the mod�
ule names� a designer might tend to associate
oosfid�c with the right cluster� Interestingly� the
algorithm decided to put it in the left cluster be�
cause of its associations with sysd�h and nos�h�
which are mostly used by modules in the left clus�
ter� The designer later con�rmed that the parti�
tion makes sense because it is the main interface
�le used by the new �le system to talk to the other
�le system�

�� We cannot quite explain why a small cluster� con�
sisting of errlst�c� erv�c� and nosfs�h� was cre�
ated on the left� It might have been better to
merge that small cluster with its neighbor cluster�
A simple explanation is that our algorithm is only
sub�optimal and may give a less�than�satisfactory
answer in certain cases�

In the next two sections� we examine our algorithm
in detail and shed some light on the heuristics used to
obtain a sub�optimal solution�
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Figure 2. Module Dependency Graph of the File System

�� Automatic Software Modularization

Software systems contain a �nite set of software
components along with a �nite set of relationships that
govern how the software components interact with each
other� Typical software components include classes�
modules� variables� macros and structures� while com�
mon relationships include import� export� inherit� pro�
cedure invocation� and variable access� The goal of
our software modularization process is to automati�
cally partition the components of a system into clus�
ters �subsystems� so that the resultant organization
concurrently minimizes inter�connectivity �i�e�� con�
nections between the components of two distinct clus�
ters� while maximizing intra�connectivity �i�e�� connec�
tions between the components of the same cluster�� We
accomplish this task by treating clustering as an opti�
mization problem where our goal is to maximize an
objective function based on a formal characterization
of the trade�o� between inter� and intra�connectivity�

The clusters� once discovered� represent higher�level
component abstractions of a system
s organization�
Each subsystem contains a collection of modules that
either cooperate to perform some high�level function
in the overall system �e�g�� scanner� parser� code gen�
erator�� or provide a set of related services that are

used throughout the system �e�g�� �le manager� mem�
ory manager�� A fundamental assumption underlying
our approach is that well�designed software systems are
organized into cohesive clusters that are loosely inter�
connected�

3.1. Intra-Connectivity
We regard Intra�Connectivity �A� to be a measure

of the connectivity between the components that are
grouped together in the same cluster� A high degree
of intra�connectivity indicates good subsystem parti�
tioning because the modules grouped within a com�
mon subsystem share many software�level components�
A low degree of intra�connectivity indicates poor sub�
system partitioning because the modules assigned to
a particular subsystem share few software�level com�
ponents �limited cohesion�� By maximizing the intra�
connectivity measurement we increase the likelihood
that changes made to a module are localized to the
subsystem that contains the module�

We de�ne the intra�connectivity measurement Ai of
cluster i consisting ofNi components andmi intra�edge
dependencies as�

Ai �
�i

N�
i
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Figure 3. Automatically Produced High�Level System Organization of the Same File System

This measurement is a fraction of the maximum
number of intra�edge dependencies that can exist for
cluster i� which is N�

i � The value of Ai is bounded
between the values of � and �� Ai is � when modules
in a cluster do not share any software�level resources�
Ai is � when every module in a cluster uses a software
resource from all of the other modules in its cluster
�i�e�� the modules and dependencies within a subsys�
tem form a complete graph�� In Figure � we apply our
intra�connectivity measurement to a cluster containing
three modules and two dependencies�

Figure 4. Intra�Connectivity Example

3.2. Inter-Connectivity
We regard Inter�Connectivity �E� to be a measure�

ment of the connectivity between two distinct clusters�
A high degree of inter�connectivity is an indication of
poor subsystem partitioning� Having a large number of
inter�dependencies complicates software maintenance
because changes to a module may a�ect many other
parts of the system due to the subsystem interrelation�
ships� A low degree of inter�connectivity is a desir�
able trait of a system organization and is an indica�
tor that the individual clusters of the system are� to a
large extent� independent� Therefore� changes applied
to a module are likely to be localized to its subsystem�

which reduces the likelihood of introducing errors into
other parts of the system�

We de�ne the inter�connectivity Eij between clus�
ters i and j consisting of Ni and Nj components� re�
spectively� with �ij inter�edge dependencies as�

Ei�j �

�
� if i � j
�i�j

�NiNj
if i �� j

Our inter�connectivity measurement is a fraction of
the maximum number of inter�edge dependencies be�
tween clusters i and j ��NiNj�� This measurement is
bound between the values of � and �� Eij is � when
there are no module�level dependencies between sub�
system i and subsystem j� Eij is � when each module
in subsystem i depends on all of the modules in subsys�
tem j and vice�versa� Figure � illustrates an example of
the application of our inter�connectivity measurement�

Figure 5. Inter�Connectivity Example

3.3. Modularization Quality
Recall that our goal is to discover a partitioning

of the components of a software system that con�
currently minimizes inter�connectivity and maximizes
intra�connectivity� The Modularization Quality �MQ�
measurement� which will be used as the objective func�
tion of our optimization process� is therefore de�ned as
a measurement of the �quality� of a particular system
modularization� Speci�cally� we de�ne the MQ of a



module dependency graph partitioned into k clusters�
where Ai is the Intra�Connectivity of the ith cluster
and Eij is the Inter�Connectivity between the ith and
jth clusters as�

MQ �

�
�
k

Pk

i��Ai �
�

k�k���
�

Pk

i�j��Ei�j if k � �

A� if k � �

The MQ measurement demonstrates the tradeo�
between inter�connectivity and intra�connectivity by
rewarding the creation of highly cohesive clusters� while
penalizing the creation of too many inter�edges� This
tradeo� is established by subtracting the average inter�
connectivity from the average intra�connectivity� We
use the average values of A and E to ensure unit consis�
tency in the subtraction because the Intra�Connectivity
summation is based on the number of subsystems �k��
while the Inter�Connectivity summation is based on the

number of distinct pairs of subsystems �k�k���� �� The
MQ measurement is bounded between �� �no cohesion
within the subsystems� and � �no coupling between the
subsystems�� Figure � illustrates an example calcula�
tion of MQ�

Figure 6. Modularization Quality Example

�� Modularization Algorithms

Now that the MQ measurement has been de�ned�
we turn our attention to developing algorithms that
start with the module dependency graph of the source
code and produce� as output� a hierarchy of clusters
that represents the subsystem structure of a software
system� Figure � depicts the software modularization
algorithms that are supported by Bunch� The opti�
mal algorithm produces the best results� but it only
works for small systems� The other two algorithms
are much faster� but they may not produce an optimal
result� The remainder of this section describes these
algorithms in detail�

The �rst step in our automatic modularization pro�
cess is to parse the source code and build a module
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Figure 7. Automatic Clustering Algorithms

dependency graph� Formally� a module dependency
graph MDG � �M�R� consists of two components M
and R where� M is the set of named modules in the
software system� and R � M �M is a set of ordered
pairs of the form hu� vi which represents the source�
level relationships that exist between module u and
module v� Once the module dependency graph is con�
structed� we apply our modularization algorithms to it�
The remainder of this section develops some additional
theory and then presents a collection of algorithms that
we have implemented to automatically partition soft�
ware systems�

4.1. Partitions of a Set

Consider the source code organization of a software
system� Let S be a set of modules fM��M�� � � � �Mng
where each module contains source code features �i�e��
variables� macros� functions� procedures� constants��
Let � � A�� A�� � � � � Ak be a set of non�empty subsets
of S� We call � a partition of set S if�

��
Sn

i��Ai � S

�� Ai

T
Aj � �� �� � i� j � n � i �� j

If � is a partition� we call each subset Ai a cluster

of S� Also� a partition of S into k non�empty clusters
is called a k�partition of S�

Given a set S that contains n elements� the num�
ber Sn�k of distinct k�partitions of the set satis�es the
recurrence equation�

Sn�k �

�
� if k � � or k � n

Sn���k��� kSn���k otherwise

The entries Sn�k are called Stirling numbers and
grow exponentially with respect to the size of S� For
example� a ��node module dependency graph would
have �� distinct partitions� while a ���node module
dependency graph would have ��	���������� distinct
partitions�



4.2. The Optimal Clustering Algorithm
We now present our algorithm for determining the

optimal clustering of a software system�

�� Let S � fM��M�� � � � �Mng� where each Mi is a module in
the software system�

�� Let MDG be the graph representing the relationships be�
tween the modules in S�

�� Generate every partition of set S�

�� EvaluateMQ for each partition�

�� The partition with the largest MQ is the optimal solution�

We have successfully applied the Optimal Cluster�
ing Algorithm to systems of up to �� modules� Beyond
that� the search space �number of k�partitions of S�
becomes so large that it cannot be explored in a rea�
sonable time�frame� Clearly� sub�optimal techniques
must be employed for systems with a large number of
modules�

4.3. Neighboring Partitions

Our sub�optimal clustering technique relies on mov�
ing modules between the clusters of the partition so
as to improve the MQ� This task is accomplished by
generating a set of neighboring partitions �NP � for a
partition�

Figure 8. Neighboring Partitions

We de�ne a partition NP to be a neighbor of a par�
tition P if and only if NP is exactly the same as P
except that a single element of a cluster in partition P
is in a di�erent cluster in partition NP � Figure � illus�
trates the process of determining all of the neighboring
partitions of P �

Although there are many other ways to de�ne a
neighboring partition� this one is simple to understand
and implement and o�ers good execution performance�

In other automated software modularization
techniques���
� a poor module movement decision
early on can negatively bias the �nal results because
there is no facility for moving a module once it has
been placed into a cluster� A useful property of our
neighboring partition approach is that the assignment
of a module to a cluster is not permanent�

4.4. Sub-Optimal Clustering Algorithm
The search space required to enumerate all possible

partitions of a software system becomes prohibitively
large as the number of modules in the system increases�
Therefore� we directed our attention to developing a
search strategy� based on traditional hill�climbing opti�
mization techniques� that quickly discovers an accept�
able sub�optimal clustering result�

In summary� our sub�optimal clustering algorithm
starts with a random partition and repeatedly �nds
better neighboring partitions until no neighboring par�
tition can be found with a higher MQ�

Sub�Optimal Clustering Algorithm

�� Let S � fM��M�� � � � �Mng� where each Mi is a module in
the software system�

�� Let MDG be the graph representing the relationships be�
tween the modules in S�

�� Generate an initial random	
� partition P of set S�

�� Repeat

� Randomly select a better neighboring partition bNP

�i�e�� one that has MQ�bNP 
 � MQ�P 
 
�

� If a bNP is found� then let P � bNP �

Until no further �improved� neighboring partitions can be
found�

�� Partition P is the sub�optimal solution�

In our sub�optimal clustering algorithm� a better
neighboring partition �bNP � is discovered by going
through the set of neighboring partitions of P � one�
by�one� until a partition with a higher MQ is found�

4.5. A Genetic Algorithm Implementation
Our experimentation with the sub�optimal cluster�

ing algorithm has shown that� given an initial random
starting partition� the algorithm will always converge
to a local maximum� However� not all randomly gen�
erated initial partitions improve to an acceptable sub�
optimal result� One approach to solving this problem is
to run the experiment many times using di�erent initial
partitions and pick the experiment that results in the
largest MQ as the sub�optimal solution� As the num�
ber of experiments increases� the probability of �nding
the globally optimal partition �based on the MQ� also
increases�

Another more systematic approach to solving our
optimization problem is based on Genetic Algorithms�
Discovering an acceptable sub�optimal solution based
on Genetic Algorithms involves starting with a pop�
ulation of randomly generated initial partitions and
systematically improving them until all of the initial
samples converge� In this approach� the resultant par�
tition with the largest MQ is used as the sub�optimal
solution�



Genetic Algorithms��
 have been successfully ap�
plied to many problems that involve exploring large
search spaces� They combine a survival�of�the��ttest
technique with a structured and randomized informa�
tion exchange to facilitate innovative search algorithms
that parallel the theory of natural selection� Genetic
Algorithms are more than a randomized search� in�
stead� they exploit historical data to speculate new in�
formation that is expected to yield improved results�

We now present our genetic search algorithm for
�nding a sub�optimal partition of a software system�

Genetic Sub�Optimal Clustering Algorithm

�� Let S � fM��M�� � � � �Mng� where each Mi is a module in
the software system�

�� Let MDG be the graph representing the relationships be�
tween the modules in S�

�� Generate a population of N random partitions of set S�

�� Repeat

� Randomly select a percentage of N partitions from
the population and improve each one by �nding a
better neighboring partition� bNP �

� Generate a new population of N partitions by mak�
ing N selections� with replacement� from the existing
populationofN partitions� These selections are to be
random and biased in favor of partitions with larger
MQs�

Until no improvement is seen for t generations� or until all
of the partitions in the population have converged to their
maximum MQ� or until the maximum number of genera�
tions �MaxG
 has been reached�

�� The partition P in the �nal population with the largest
MQ is the sub�optimal solution�

Our genetic clustering implementation has several
user�con�gurable parameters� These include setting
the population size �N �� the maximumnumber of gen�
erations to execute �MaxG� before concluding that
the experiment did not converge� and the convergence
threshold �which is a percentage of MaxG��

4.6. Hierarchical Clustering
The algorithms presented in the previous section

generated partitions based of the MDG graph� which
was formed by recovering the relationships between
source code components� However� when performing
analysis on large software systems the number of clus�
ters found in a partition may be large� In this case
it makes sense to cluster the clusters� thus creating a
hierarchy of subsystems�

Several software modularization techniques��� ��

support hierarchical clustering� Our technique does so
as well in the following way�

The �rst step in the hierarchical clustering process
is to apply our standard software modularization algo�
rithms to the MDG graph� This activity discovers a

partition� Plm� which represents a partition that has
converged to a local maximum �lm�� We then build a
new higher�level graph by treating each cluster in Plm
as a single component� Furthermore� if there exists at
least one edge between any two clusters in Plm then
there is an edge between their representative nodes in
the new graph� We then apply our clustering algo�
rithms to the new graph in order to discover the next
higher�level graph� and so on� This process is applied
iteratively until all of the components have coalesced
into a single cluster �i�e�� the root of the subsystem
decomposition hierarchy��

�� The Bunch Clustering Tool

We have implemented the algorithms described
above and applied them to many example software sys�
tems� Table � presents performance measurements for
some common systems that were processed by Bunch�
The computation environment used for these exper�
iments was a Pentium ��� computer with �� Mb of
RAM� running the WindowsNT ��� operating system�
The execution times shown in Table � were collected
running Bunch under the Microsoft J�� virtual Java
machine� We experienced similar performance results
using the Java just�in�time �JIT� compiler provided by
Sun Microsystems in Solaris ����

Interested readers may download a copy of
our software from the Drexel University Soft�
ware Engineering Research Group home page
http���www�mcs�drexel�edu��serg�

�� Related Work

The problem of automatic modularization �also re�
ferred to as automatic clustering� has been exten�
sively researched over the past two decades� A re�
cent paper by Wiggerts���
 provides an excellent in�
troductory survey to the use of clustering in systems
remodularization� Two widely referenced clustering
tools that have been developed to speci�cally address
the software remodularization problem are Rigi��
 and
Arch���
� These tools� however� employ clustering tech�
niques that rely on the intervention from an architect
who understands the system structure in order to pro�
duce good results� As a result� these techniques are of
little help to someone who is not familiar with a soft�
ware system� yet is trying to understand its structure�

Hutchens and Basili��
 presented an automatic clus�
tering technique based on data bindings� Unfortu�
nately� the use of data bindings as the basis for per�
forming a software modularization has some short�
comings� Speci�cally� if the system modules exhibit
strong encapsulation �i�e�� hide their data�� then there



System System Type Module Module�Level Execution Time
Name Count Relationships

ispell Unix Spell Checker �� �� �����	 sec�
rcs Version Control System �� ��� ������ sec�
mtunis Small Operating System �� �� ������ sec�
lu Proprietary System ��	 ��	 � hour ������ sec�

Table 1. Bunch Tool Performance

is no way of determining their module�level relation�
ships with data bindings because of the limited number
of publicly accessible variables� Additionally� modular�
ization based on data bindings addresses the problem
of clustering procedures and variables into classes and
modules� Our objective is to cluster related modules
and classes into subsystems� which is useful when sys�
tems have a large number of modules�

In addition to the bottom�up clustering approaches�
which produce high�level structural views starting with
the structure of the source code� research emphasis
has been placed on top�down approaches� For exam�
ple� the goal of the Software Re�exion Model��
 is to
capture and exploit the di�erences that exist between
the source code organization and the designer
s men�
tal model of the high�level system organization� The
primary purpose of this technique is to streamline the
amount of time it takes for someone unfamiliar with
the system to understand its source code structure�

�� Conclusions and Future Work

Experimentation with our clustering technique has
shown good results for many of the systems that we
have investigated� The primary method that we use
to evaluate our results is to present an automatically
generated modularization of a software system to the
actual system designer�s� and ask for feedback on the
quality of the results�

While we were able to produce good results for many
of the systems that we examined� one known shortcom�
ing with our current de�nition of modularization qual�
ity �MQ� is that it does not take into account the In�
terconnection Strength �IS���
 of the relationships that
exist between the modules in the software system� Ac�
cording to M�uller et� al�� IS is a measurement of the
exact number of syntactic objects that are exchanged
or shared between two modules� Thus� our clustering
technique� which is based strictly on the topology of the
module dependency graph� might not convey an accu�
rate representation of a systems modularization when
the magnitude of the interconnection strengths of the
actual module relations di�er signi�cantly�

In order to address this shortcoming� we are cur�

rently working on an extension to our de�nitions of
inter�connectivity� intra�connectivity and modulariza�
tion quality that accounts for the weight of the module�
level dependencies� We expect this extension to yield
better results for systems in which the distribution of
interconnection strength values is non�uniform� Our
current assumption is that the value of IS for module�
level dependencies is equal to one�

References

��� Y� Chen� Reverse engineering� In B� Krishnamurthy�
editor� Practical Reusable UNIX Software� chapter ��
pages �����	
� John Wiley � Sons� New York� ���
�

��� Y� Chen� E� Gansner� and E� Koutso�os� A C�� Data
Model Supporting Reachability Analysis and Dead
Code Detection� In Sixth European Software Engi�
neering Conference and Fifth ACM SIGSOFT Sym�
posium on the Foundations of Software Engineering�
Sept� �����

��� F� DeRemer and H� Kron� Programming�in�the�Large
Versus Programming�in�the�Small� IEEE Transactions
on Software Engineering� pages 
	�
�� June �����

��� D� Goldberg� Genetic Algorithms in Search� Optimiza�
tion � Machine Learning� Addison Wesley� ��
��

�
� D� Hutchens and R� Basili� System Structure Analysis�
Clustering with Data Bindings� IEEE Transactions on
Software Engineering� pages �����
�� Aug� ���
�

��� H� M�uller� M� Orgun� S� Tilley� and J� Uhl� Discovering
and reconstructing subsystem structures through re�
verse engineering� Technical Report DCS��	��IR� De�
partment of Computer Science� University of Victoria�
Aug� �����

��� G� Murphy� D� Notkin� and K� Sullivan� Software re�
�exion models� Bridging the gap between source and
high�level models� In Proc� ACM SIGSOFT Symp�
Foundations of Software Engineering� ���
�

�
� A� Nijenhuis and H� S�Wilf� Combinatorial Algorithms�
Academic Press� �nd edition� ���
�

��� S� North and E� Koutso�os� Applications of graph visu�
alization� In Proc� Graphics Interface� pages ��
���
�
�����

��	� R� Schwanke� An intelligent tool for re�engineering
software modularity� In Proc� ��th Intl� Conf� Software
Engineering� May �����

���� T� Wiggerts� Using clustering algorithms in legacy sys�
tems remodularization� In Working Conference on Re�
verse Engineering �WCRE��	� �����



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


