
Using Automatic Clustering to Produce High�Level System

Organizations of Source Code

S� Mancoridis� B� S� Mitchell� C� Rorres
Department of Mathematics � Computer Science

Drexel University� Philadelphia� PA� USA
fsmancori� bmitchel� crorresg�mcs�drexel�edu

Y� Chen� E� R� Gansner
AT�T Labs � Research
Florham Park� NJ� USA

fchen�ergg�research�att�com

Abstract

This paper describes a collection of algorithms that we

developed and implemented to facilitate the automatic

recovery of the modular structure of a software system

from its source code�

We treat automatic modularization as an optimization

problem� Our algorithms make use of traditional hill�

climbing and genetic algorithms�

Keywords� Clustering� Reverse Engineering� Soft�

ware Structure� Optimization� Genetic Algorithms�

�� Introduction

Understanding the intricate relationships that exist
between the source code components of a software sys�
tem can be an arduous task� Frequently� this problem
is exacerbated because the design documentation is out
of date and the original system architect is no longer
available for consultation�

With no mechanism for gaining insight into the sys�
tem design and structure� the software maintenance
practitioner is often forced to make modi�cations to
the source code without a thorough understanding of
its organization� As the requirements of heavily used
software systems tend to change over time� it is in�
evitable that continually adopting an ad hoc approach
to maintenance will have a negative e�ect on the overall
modularity of the system� Over time� the system struc�
ture may deteriorate to the point where the source code
organization is so chaotic that it needs to be radically
overhauled or abandoned�

More than ever� software engineers rely on notations
and tools to help them cope with the complexity of
the structure of large software systems� One way pro�
grammers cope with structural complexity is by group�
ing �clustering� related procedures and their associated
data into modules �or classes��

While modules do much to improve software devel�
opment and maintenance� they are insu�cient for sup�
porting the design and ongoing maintenance of large
systems� Such systems often contain several hundreds
of thousands of lines of code that are packaged into a
large number of cooperating modules� Fortunately� we
often �nd that these systems are organized into identi�
�able clusters of modules� called subsystems� that col�
laborate to achieve a higher�level system behavior�	
�

Unfortunately� the subsystem structure is not ob�
vious from the source code structure� Our research
therefore proposes an automatic technique that creates
a hierarchical view of the system organization based
solely on the components and relationships that exist
in the source code� The �rst step in our technique is to
represent the system modules and the module�level re�
lationships as a module dependency graph� We then
use our algorithms to partition the graph in a way
that derives the high�level subsystem structure from
the component�level relationships that are extracted
from the source code�

Fully automatic modularization techniques are use�
ful to programmers who lack familiarity with a sys�
tem� These techniques are also useful to system archi�
tects who want to compare documented modulariza�
tions with the automatically derived ones� and possi�
bly improve the design by learning from the di�erences
between the modularizations�

Figure � shows the architecture of our automatic
software modularization environment� The �rst step
in the modularization process is to extract the module�
level dependencies from the source code and store the
resultant information in a database� We used AT�T
s
CIA tool��
 �for C� and Acacia��
 �for C��� for this
step� After all of the module�level dependencies have
been stored in a database� we execute an AWK script
to query the database� �lter the query results� and pro�
duce� as output� a textual representation of the module
dependency graph� Our clustering tool� called Bunch�

Source
Code

Source
Code

Analyzer
(e.g., CIA)

Source
Code

Database

Query
Script

(e.g., AWK)

Module
Dependency

Graph

Clustering
Tool

(e.g., Bunch)

Output
File

Graph
Visualization

Tool
(e.g., dotty)

Clustered
Graph

Figure 1. Automatic Software Modularization Environment

applies our clustering algorithms to the module depen�
dency graph and emits a text�based description of the
high�level structure of the systems organization� We
then use the AT�T dotty visualization tool��
 to read
the output �le from our clustering tool and produce a
visualization of the results�

The structure of the remainder of this paper is as
follows� Section � presents a case study that illus�
trates the e�ectiveness of our automatic software mod�
ularization technique� Section 	 develops the perti�
nent aspects of our technique by formally quantifying
inter�connectivity� intra�connectivity and modulariza�
tion quality� Section � presents the algorithms we have
implemented for clustering software components� Sec�
tion � is dedicated to describing the operation and
performance of our modularization tool� Section �
presents related research in the area of software modu�
larization� We conclude by outlining the research bene�
�ts and limitations of our work along with a discussion
of our future plans to improve our technique�

�� An Example

Figure � shows the module dependency graph of a
C�� program that implements a �le system service� It
allows users of a new �le system nos to access �les from
an old �le system oos �with di�erent �le node struc�
tures� mounted under the users
 name space� Each
edge in the graph represents at least one dependency
relationship between program entities in the two cor�
responding source modules �C�� source �les�� For
example� the edge between oosfid�c and nos�h is es�
tablished due to �� dependency relationships from the
former to the latter�

The program consists of ����	� lines of C�� code�
not counting the system library �les� The Acacia
tool parsed the program and detected ��	 C�� pro�
gram entities and ��� dependency relationships be�
tween them� Note that containment relationships be�
tween classes�structs and their members are excluded
for consideration in the construction of module depen�
dency graphs�

Even with the module dependency graph� it is not
clear what major components are in this system� Ap�
plying our automatic modularization tool to the graph
results in Figure 	 with two large clusters and two
smaller ones in each� After discussing the outcome of
our experiment with the original designer of the sys�
tem� several interesting observations were made�

�� It is obvious that there are two major components
in this system� The right cluster mainly deals with
the old �le system while the left cluster deals with
the new �le system�

�� The clustering tool is e�ective in putting strongly�
coupled modules like pwdgrp�c and pwdgrp�h in
the same cluster even though the algorithm does
not get any hints from the �le names� Such cluster�
ing is consistent with the designer
s expectation�

	� On the other hand� just by looking at the mod�
ule names� a designer might tend to associate
oosfid�c with the right cluster� Interestingly� the
algorithm decided to put it in the left cluster be�
cause of its associations with sysd�h and nos�h�
which are mostly used by modules in the left clus�
ter� The designer later con�rmed that the parti�
tion makes sense because it is the main interface
�le used by the new �le system to talk to the other
�le system�

�� We cannot quite explain why a small cluster� con�
sisting of errlst�c� erv�c� and nosfs�h� was cre�
ated on the left� It might have been better to
merge that small cluster with its neighbor cluster�
A simple explanation is that our algorithm is only
sub�optimal and may give a less�than�satisfactory
answer in certain cases�

In the next two sections� we examine our algorithm
in detail and shed some light on the heuristics used to
obtain a sub�optimal solution�

pwdgrp.c

pwdgrp.h

oosfs.h

fids.h

oosfs.c

nosfs.h

nos.h

sysd.h

fids.c fork.c

fcall.c

log.c

oosfid.c

nosfs.c

serv.c

errlst.c

Figure 2. Module Dependency Graph of the File System

�� Automatic Software Modularization

Software systems contain a �nite set of software
components along with a �nite set of relationships that
govern how the software components interact with each
other� Typical software components include classes�
modules� variables� macros and structures� while com�
mon relationships include import� export� inherit� pro�
cedure invocation� and variable access� The goal of
our software modularization process is to automati�
cally partition the components of a system into clus�
ters �subsystems� so that the resultant organization
concurrently minimizes inter�connectivity �i�e�� con�
nections between the components of two distinct clus�
ters� while maximizing intra�connectivity �i�e�� connec�
tions between the components of the same cluster�� We
accomplish this task by treating clustering as an opti�
mization problem where our goal is to maximize an
objective function based on a formal characterization
of the trade�o� between inter� and intra�connectivity�

The clusters� once discovered� represent higher�level
component abstractions of a system
s organization�
Each subsystem contains a collection of modules that
either cooperate to perform some high�level function
in the overall system �e�g�� scanner� parser� code gen�
erator�� or provide a set of related services that are

used throughout the system �e�g�� �le manager� mem�
ory manager�� A fundamental assumption underlying
our approach is that well�designed software systems are
organized into cohesive clusters that are loosely inter�
connected�

3.1. Intra-Connectivity
We regard Intra�Connectivity �A� to be a measure

of the connectivity between the components that are
grouped together in the same cluster� A high degree
of intra�connectivity indicates good subsystem parti�
tioning because the modules grouped within a com�
mon subsystem share many software�level components�
A low degree of intra�connectivity indicates poor sub�
system partitioning because the modules assigned to
a particular subsystem share few software�level com�
ponents �limited cohesion�� By maximizing the intra�
connectivity measurement we increase the likelihood
that changes made to a module are localized to the
subsystem that contains the module�

We de�ne the intra�connectivity measurement Ai of
cluster i consisting ofNi components andmi intra�edge
dependencies as�

Ai �
�i

N�
i

1.1

0.2

0.4
1.2

0.3

0.1

pwdgrp.c

pwdgrp.h

oosfs.h

fids.h

oosfs.c

nosfs.h

nos.h

sysd.h

fids.cfork.c

fcall.c

log.c

oosfid.c

nosfs.c

serv.cerrlst.c

Figure 3. Automatically Produced High�Level System Organization of the Same File System

This measurement is a fraction of the maximum
number of intra�edge dependencies that can exist for
cluster i� which is N�

i � The value of Ai is bounded
between the values of � and �� Ai is � when modules
in a cluster do not share any software�level resources�
Ai is � when every module in a cluster uses a software
resource from all of the other modules in its cluster
�i�e�� the modules and dependencies within a subsys�
tem form a complete graph�� In Figure � we apply our
intra�connectivity measurement to a cluster containing
three modules and two dependencies�

Figure 4. Intra�Connectivity Example

3.2. Inter-Connectivity
We regard Inter�Connectivity �E� to be a measure�

ment of the connectivity between two distinct clusters�
A high degree of inter�connectivity is an indication of
poor subsystem partitioning� Having a large number of
inter�dependencies complicates software maintenance
because changes to a module may a�ect many other
parts of the system due to the subsystem interrelation�
ships� A low degree of inter�connectivity is a desir�
able trait of a system organization and is an indica�
tor that the individual clusters of the system are� to a
large extent� independent� Therefore� changes applied
to a module are likely to be localized to its subsystem�

which reduces the likelihood of introducing errors into
other parts of the system�

We de�ne the inter�connectivity Eij between clus�
ters i and j consisting of Ni and Nj components� re�
spectively� with �ij inter�edge dependencies as�

Ei�j �

�
� if i � j
�i�j

�NiNj
if i �� j

Our inter�connectivity measurement is a fraction of
the maximum number of inter�edge dependencies be�
tween clusters i and j ��NiNj�� This measurement is
bound between the values of � and �� Eij is � when
there are no module�level dependencies between sub�
system i and subsystem j� Eij is � when each module
in subsystem i depends on all of the modules in subsys�
tem j and vice�versa� Figure � illustrates an example of
the application of our inter�connectivity measurement�

Figure 5. Inter�Connectivity Example

3.3. Modularization Quality
Recall that our goal is to discover a partitioning

of the components of a software system that con�
currently minimizes inter�connectivity and maximizes
intra�connectivity� The Modularization Quality �MQ�
measurement� which will be used as the objective func�
tion of our optimization process� is therefore de�ned as
a measurement of the �quality� of a particular system
modularization� Speci�cally� we de�ne the MQ of a

module dependency graph partitioned into k clusters�
where Ai is the Intra�Connectivity of the ith cluster
and Eij is the Inter�Connectivity between the ith and
jth clusters as�

MQ �

�
�
k

Pk

i��Ai �
�

k�k���
�

Pk

i�j��Ei�j if k � �

A� if k � �

The MQ measurement demonstrates the tradeo�
between inter�connectivity and intra�connectivity by
rewarding the creation of highly cohesive clusters� while
penalizing the creation of too many inter�edges� This
tradeo� is established by subtracting the average inter�
connectivity from the average intra�connectivity� We
use the average values of A and E to ensure unit consis�
tency in the subtraction because the Intra�Connectivity
summation is based on the number of subsystems �k��
while the Inter�Connectivity summation is based on the

number of distinct pairs of subsystems �k�k���� �� The
MQ measurement is bounded between �� �no cohesion
within the subsystems� and � �no coupling between the
subsystems�� Figure � illustrates an example calcula�
tion of MQ�

Figure 6. Modularization Quality Example

�� Modularization Algorithms

Now that the MQ measurement has been de�ned�
we turn our attention to developing algorithms that
start with the module dependency graph of the source
code and produce� as output� a hierarchy of clusters
that represents the subsystem structure of a software
system� Figure � depicts the software modularization
algorithms that are supported by Bunch� The opti�
mal algorithm produces the best results� but it only
works for small systems� The other two algorithms
are much faster� but they may not produce an optimal
result� The remainder of this section describes these
algorithms in detail�

The �rst step in our automatic modularization pro�
cess is to parse the source code and build a module

Bunch
Clustering

Tool

Optimal

Sub-optimal
Clustering Algorithm

Genetic
Algorithm

Neighboring
Partition
Strategy

or

or

uses

uses

Clustering Algorithm

Figure 7. Automatic Clustering Algorithms

dependency graph� Formally� a module dependency
graph MDG � �M�R� consists of two components M
and R where� M is the set of named modules in the
software system� and R � M �M is a set of ordered
pairs of the form hu� vi which represents the source�
level relationships that exist between module u and
module v� Once the module dependency graph is con�
structed� we apply our modularization algorithms to it�
The remainder of this section develops some additional
theory and then presents a collection of algorithms that
we have implemented to automatically partition soft�
ware systems�

4.1. Partitions of a Set

Consider the source code organization of a software
system� Let S be a set of modules fM��M�� � � � �Mng
where each module contains source code features �i�e��
variables� macros� functions� procedures� constants��
Let � � A�� A�� � � � � Ak be a set of non�empty subsets
of S� We call � a partition of set S if�

��
Sn

i��Ai � S

�� Ai

T
Aj � �� �� � i� j � n � i �� j

If � is a partition� we call each subset Ai a cluster

of S� Also� a partition of S into k non�empty clusters
is called a k�partition of S�

Given a set S that contains n elements� the num�
ber Sn�k of distinct k�partitions of the set satis�es the
recurrence equation�

Sn�k �

�
� if k � � or k � n

Sn���k��� kSn���k otherwise

The entries Sn�k are called Stirling numbers and
grow exponentially with respect to the size of S� For
example� a ��node module dependency graph would
have �� distinct partitions� while a ���node module
dependency graph would have ��	���������� distinct
partitions�

4.2. The Optimal Clustering Algorithm
We now present our algorithm for determining the

optimal clustering of a software system�

�� Let S � fM��M�� � � � �Mng� where each Mi is a module in
the software system�

�� Let MDG be the graph representing the relationships be�
tween the modules in S�

�� Generate every partition of set S�

�� EvaluateMQ for each partition�

�� The partition with the largest MQ is the optimal solution�

We have successfully applied the Optimal Cluster�
ing Algorithm to systems of up to �� modules� Beyond
that� the search space �number of k�partitions of S�
becomes so large that it cannot be explored in a rea�
sonable time�frame� Clearly� sub�optimal techniques
must be employed for systems with a large number of
modules�

4.3. Neighboring Partitions

Our sub�optimal clustering technique relies on mov�
ing modules between the clusters of the partition so
as to improve the MQ� This task is accomplished by
generating a set of neighboring partitions �NP � for a
partition�

Figure 8. Neighboring Partitions

We de�ne a partition NP to be a neighbor of a par�
tition P if and only if NP is exactly the same as P
except that a single element of a cluster in partition P
is in a di�erent cluster in partition NP � Figure � illus�
trates the process of determining all of the neighboring
partitions of P �

Although there are many other ways to de�ne a
neighboring partition� this one is simple to understand
and implement and o�ers good execution performance�

In other automated software modularization
techniques���
� a poor module movement decision
early on can negatively bias the �nal results because
there is no facility for moving a module once it has
been placed into a cluster� A useful property of our
neighboring partition approach is that the assignment
of a module to a cluster is not permanent�

4.4. Sub-Optimal Clustering Algorithm
The search space required to enumerate all possible

partitions of a software system becomes prohibitively
large as the number of modules in the system increases�
Therefore� we directed our attention to developing a
search strategy� based on traditional hill�climbing opti�
mization techniques� that quickly discovers an accept�
able sub�optimal clustering result�

In summary� our sub�optimal clustering algorithm
starts with a random partition and repeatedly �nds
better neighboring partitions until no neighboring par�
tition can be found with a higher MQ�

Sub�Optimal Clustering Algorithm

�� Let S � fM��M�� � � � �Mng� where each Mi is a module in
the software system�

�� Let MDG be the graph representing the relationships be�
tween the modules in S�

�� Generate an initial random	
� partition P of set S�

�� Repeat

� Randomly select a better neighboring partition bNP

�i�e�� one that has MQ�bNP
 � MQ�P

�

� If a bNP is found� then let P � bNP �

Until no further �improved� neighboring partitions can be
found�

�� Partition P is the sub�optimal solution�

In our sub�optimal clustering algorithm� a better
neighboring partition �bNP � is discovered by going
through the set of neighboring partitions of P � one�
by�one� until a partition with a higher MQ is found�

4.5. A Genetic Algorithm Implementation
Our experimentation with the sub�optimal cluster�

ing algorithm has shown that� given an initial random
starting partition� the algorithm will always converge
to a local maximum� However� not all randomly gen�
erated initial partitions improve to an acceptable sub�
optimal result� One approach to solving this problem is
to run the experiment many times using di�erent initial
partitions and pick the experiment that results in the
largest MQ as the sub�optimal solution� As the num�
ber of experiments increases� the probability of �nding
the globally optimal partition �based on the MQ� also
increases�

Another more systematic approach to solving our
optimization problem is based on Genetic Algorithms�
Discovering an acceptable sub�optimal solution based
on Genetic Algorithms involves starting with a pop�
ulation of randomly generated initial partitions and
systematically improving them until all of the initial
samples converge� In this approach� the resultant par�
tition with the largest MQ is used as the sub�optimal
solution�

Genetic Algorithms��
 have been successfully ap�
plied to many problems that involve exploring large
search spaces� They combine a survival�of�the��ttest
technique with a structured and randomized informa�
tion exchange to facilitate innovative search algorithms
that parallel the theory of natural selection� Genetic
Algorithms are more than a randomized search� in�
stead� they exploit historical data to speculate new in�
formation that is expected to yield improved results�

We now present our genetic search algorithm for
�nding a sub�optimal partition of a software system�

Genetic Sub�Optimal Clustering Algorithm

�� Let S � fM��M�� � � � �Mng� where each Mi is a module in
the software system�

�� Let MDG be the graph representing the relationships be�
tween the modules in S�

�� Generate a population of N random partitions of set S�

�� Repeat

� Randomly select a percentage of N partitions from
the population and improve each one by �nding a
better neighboring partition� bNP �

� Generate a new population of N partitions by mak�
ing N selections� with replacement� from the existing
populationofN partitions� These selections are to be
random and biased in favor of partitions with larger
MQs�

Until no improvement is seen for t generations� or until all
of the partitions in the population have converged to their
maximum MQ� or until the maximum number of genera�
tions �MaxG
 has been reached�

�� The partition P in the �nal population with the largest
MQ is the sub�optimal solution�

Our genetic clustering implementation has several
user�con�gurable parameters� These include setting
the population size �N �� the maximumnumber of gen�
erations to execute �MaxG� before concluding that
the experiment did not converge� and the convergence
threshold �which is a percentage of MaxG��

4.6. Hierarchical Clustering
The algorithms presented in the previous section

generated partitions based of the MDG graph� which
was formed by recovering the relationships between
source code components� However� when performing
analysis on large software systems the number of clus�
ters found in a partition may be large� In this case
it makes sense to cluster the clusters� thus creating a
hierarchy of subsystems�

Several software modularization techniques��� ��

support hierarchical clustering� Our technique does so
as well in the following way�

The �rst step in the hierarchical clustering process
is to apply our standard software modularization algo�
rithms to the MDG graph� This activity discovers a

partition� Plm� which represents a partition that has
converged to a local maximum �lm�� We then build a
new higher�level graph by treating each cluster in Plm
as a single component� Furthermore� if there exists at
least one edge between any two clusters in Plm then
there is an edge between their representative nodes in
the new graph� We then apply our clustering algo�
rithms to the new graph in order to discover the next
higher�level graph� and so on� This process is applied
iteratively until all of the components have coalesced
into a single cluster �i�e�� the root of the subsystem
decomposition hierarchy��

�� The Bunch Clustering Tool

We have implemented the algorithms described
above and applied them to many example software sys�
tems� Table � presents performance measurements for
some common systems that were processed by Bunch�
The computation environment used for these exper�
iments was a Pentium ��� computer with �� Mb of
RAM� running the WindowsNT ��� operating system�
The execution times shown in Table � were collected
running Bunch under the Microsoft J�� virtual Java
machine� We experienced similar performance results
using the Java just�in�time �JIT� compiler provided by
Sun Microsystems in Solaris ����

Interested readers may download a copy of
our software from the Drexel University Soft�
ware Engineering Research Group home page
http���www�mcs�drexel�edu��serg�

�� Related Work

The problem of automatic modularization �also re�
ferred to as automatic clustering� has been exten�
sively researched over the past two decades� A re�
cent paper by Wiggerts���
 provides an excellent in�
troductory survey to the use of clustering in systems
remodularization� Two widely referenced clustering
tools that have been developed to speci�cally address
the software remodularization problem are Rigi��
 and
Arch���
� These tools� however� employ clustering tech�
niques that rely on the intervention from an architect
who understands the system structure in order to pro�
duce good results� As a result� these techniques are of
little help to someone who is not familiar with a soft�
ware system� yet is trying to understand its structure�

Hutchens and Basili��
 presented an automatic clus�
tering technique based on data bindings� Unfortu�
nately� the use of data bindings as the basis for per�
forming a software modularization has some short�
comings� Speci�cally� if the system modules exhibit
strong encapsulation �i�e�� hide their data�� then there

System System Type Module Module�Level Execution Time
Name Count Relationships

ispell Unix Spell Checker �� �� �����	 sec�
rcs Version Control System �� ��� ������ sec�
mtunis Small Operating System �� �� ������ sec�
lu Proprietary System ��	 ��	 � hour ������ sec�

Table 1. Bunch Tool Performance

is no way of determining their module�level relation�
ships with data bindings because of the limited number
of publicly accessible variables� Additionally� modular�
ization based on data bindings addresses the problem
of clustering procedures and variables into classes and
modules� Our objective is to cluster related modules
and classes into subsystems� which is useful when sys�
tems have a large number of modules�

In addition to the bottom�up clustering approaches�
which produce high�level structural views starting with
the structure of the source code� research emphasis
has been placed on top�down approaches� For exam�
ple� the goal of the Software Re�exion Model��
 is to
capture and exploit the di�erences that exist between
the source code organization and the designer
s men�
tal model of the high�level system organization� The
primary purpose of this technique is to streamline the
amount of time it takes for someone unfamiliar with
the system to understand its source code structure�

�� Conclusions and Future Work

Experimentation with our clustering technique has
shown good results for many of the systems that we
have investigated� The primary method that we use
to evaluate our results is to present an automatically
generated modularization of a software system to the
actual system designer�s� and ask for feedback on the
quality of the results�

While we were able to produce good results for many
of the systems that we examined� one known shortcom�
ing with our current de�nition of modularization qual�
ity �MQ� is that it does not take into account the In�
terconnection Strength �IS���
 of the relationships that
exist between the modules in the software system� Ac�
cording to M�uller et� al�� IS is a measurement of the
exact number of syntactic objects that are exchanged
or shared between two modules� Thus� our clustering
technique� which is based strictly on the topology of the
module dependency graph� might not convey an accu�
rate representation of a systems modularization when
the magnitude of the interconnection strengths of the
actual module relations di�er signi�cantly�

In order to address this shortcoming� we are cur�

rently working on an extension to our de�nitions of
inter�connectivity� intra�connectivity and modulariza�
tion quality that accounts for the weight of the module�
level dependencies� We expect this extension to yield
better results for systems in which the distribution of
interconnection strength values is non�uniform� Our
current assumption is that the value of IS for module�
level dependencies is equal to one�

References

��� Y� Chen� Reverse engineering� In B� Krishnamurthy�
editor� Practical Reusable UNIX Software� chapter ��
pages �����	
� John Wiley � Sons� New York� ���
�

��� Y� Chen� E� Gansner� and E� Koutso�os� A C�� Data
Model Supporting Reachability Analysis and Dead
Code Detection� In Sixth European Software Engi�
neering Conference and Fifth ACM SIGSOFT Sym�
posium on the Foundations of Software Engineering�
Sept� �����

��� F� DeRemer and H� Kron� Programming�in�the�Large
Versus Programming�in�the�Small� IEEE Transactions
on Software Engineering� pages
	�
�� June �����

��� D� Goldberg� Genetic Algorithms in Search� Optimiza�
tion � Machine Learning� Addison Wesley� ��
��

�
� D� Hutchens and R� Basili� System Structure Analysis�
Clustering with Data Bindings� IEEE Transactions on
Software Engineering� pages �����
�� Aug� ���
�

��� H� M�uller� M� Orgun� S� Tilley� and J� Uhl� Discovering
and reconstructing subsystem structures through re�
verse engineering� Technical Report DCS��	��IR� De�
partment of Computer Science� University of Victoria�
Aug� �����

��� G� Murphy� D� Notkin� and K� Sullivan� Software re�
�exion models� Bridging the gap between source and
high�level models� In Proc� ACM SIGSOFT Symp�
Foundations of Software Engineering� ���
�

�
� A� Nijenhuis and H� S�Wilf� Combinatorial Algorithms�
Academic Press� �nd edition� ���
�

��� S� North and E� Koutso�os� Applications of graph visu�
alization� In Proc� Graphics Interface� pages ��
���
�
�����

��	� R� Schwanke� An intelligent tool for re�engineering
software modularity� In Proc� ��th Intl� Conf� Software
Engineering� May �����

���� T� Wiggerts� Using clustering algorithms in legacy sys�
tems remodularization� In Working Conference on Re�
verse Engineering �WCRE��	� �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

