
A Short Introduction to the GXL Software Exchange Format

Richard C. Holt
University of Waterloo

Department of Computer Science
Waterloo N2L 3G1,

Canada
holt@plg.uwaterloo.ca

Andreas Winter
University of Koblenz-Landau

Institute for Software Technology
Rheinau 1,

D-56075 Koblenz, Germany
winter@uni-koblenz.de

Abstract

GXL (Graph Exchange Language) is designed
to be a standard exchange format for informa-
tion that is derived from software. This ex-
change is done by representing the information
as a graph and transcribing the graph to XML.
This paper presents an example of a graph rep-
resenting program information and shows how
such a graph is encoded in XML The syntax
of GXL is given by an XML DTD. The form
of GXL graphs is given by a schema (a UML
class diagram) which in turn can be exchanged
as a GXL graph.

1. INTRODUCTION

This paper gives a brief introduction to the
GXL (Graph Exchange Language) software
exchange format (SEF) [Ebert et al. 1999],
[Holt et al. 2000]. GXL is designed to be a
standard for exchanging information derived
from programs, and more generally for ex-
changing information which is conveniently
represented as a graph. GXL is represented in
XML. We give an example of a diagram that
represents information about a program and
shows how that information is translated to
GXL and hence to XML. As well, the syntax
of GXL is given in terms of DTD (Document
Type Definition) [W3C, 1998].

2. DATA AS TYPED GRAPHS

Figure 1 shows a graph that represents a frag-
ment of a program, in which procedure P calls
procedure Q and references variable V. As
well, procedure Q references variable W. Pro-
cedure P is located in file main.c while Q is
located in file test.c. Variable V is declared on
line 225 while W is declared on line 316. The
calls and references in the program occur on
various source lines in the program (lines 127,
42 and 27).

Figure 1. Example typed graph with
 attributes

It is common to represent data about software
as diagrams similar to Figure 1. Such a dia-
gram is an attributed (File and Line are attrib-
utes), typed (Proc and Var are types), directed
graph, or simply a typed graph for short. This
mathematical model (typed graphs) provides a
clear meaning of the data we are exchanging,
aside from any particular way we choose to
encode the data as a stream of bytes.

3. REPRESENTING A GRAPH IN XML

Since XML has become a standard for trans-
mitting streams of data, we have chosen to en-
code GXL diagrams in XML. As an example,
Figure 2 represents the graph from Figure 1 as
written in XML (using the GXL standard).

<gxl>
<node id="P" type="Proc">

<attr name="File" value="main.c" />
</node>
<node id="Q" type="Proc">

<attr name="File" value="test.c" />
</node>
<node id="V" type="Var">

 <attr name="Line" value="225" />
</node>
<node id="W" type="Var">

<attr name="Line" value="316" />
</node>
<edge begin="P" end="Q" type="Call ">

<attr name="Line" value="42" />
</edge>
<edge begin="P" end="V" type="Ref">

<attr name="Line" value="127" />
</edge>
<edge begin="Q" end="W" type="Ref">

<attr name="Line" value="316" />
</edge>
</gxl>

Figure 2. Graph in Figure 1 represented in
XML (as an GXL document). The nodes,
P, Q, V and W, and edges (P,Q), (P, V) and
(Q, W) are represented along with their
types and attributes.

As can be seen in Figure 2, each node is
described within the tagging constructs
<node> and </node>. For example, lines 2-4
in the figure specify that node P of type Proc
has a File attribute whose value is main.c.
Lines 14-16 specify that edge (P, Q) of type
Call has a Line attribute whose value is 42. (In
general each node or edge can have any num-
ber of attributes.)

Although we will not ill ustrate it here, GXL
can handle different programming languages,
e.g., C++ and Cobol, and can handle various

levels of granularity, e.g., Abstract Syntax
Trees to Architecture. This flexibili ty derives
from the fact that GXL can represent any typed
graph.

4. SYNTAX OF GXL

We use the DTD (Document Type Definition)
notation to specify the syntax of GXL's XML
streams. Figure 3 gives a simpli fied version of
the DTD for GXL.

<!ELEMENT gxl (node | edge)* >
<!ATTLIST gxl

schema CDATA #REQUIRED
identifiededges (true | false) #REQUIRED >

<!ELEMENT node (attr)* >
<!ATTLIST node

id ID #REQUIRED
type CDATA #IMPLIED
edgeorder IDREFS #IMPLIED >

<!ELEMENT edge (attr)* >
<!ATTLIST edge

id ID #IMPLIED
type CDATA #IMPLIED
begin IDREF #REQUIRED
end IDREF #REQUIRED >

<!ELEMENT attr EMPTY >
<!ATTLIST attr

name CDATA #REQUIRED
value CDATA #IMPLIED >

Figure 3. Simpli fied DTD specifying the
syntax of the XML stream for GXL.

Line 1 of Figure 3 specifies that a GXL stream
consists of zero or more node and edge de-
scriptions. Lines 2-4 state that the parameters
in a GXL tag must specify the schema for the
graph (this will be discussed below) and must
specify whether there are to be distinct identi-
fiers on edges (these identifiers will not be dis-
cussed in this paper). Line 5 states that a node
has zero or more attributes. Lines 6-9 states
that each node has a required id and optional
(IMPLIED) type and edgeorder attributes
(edgeorder is not discussed in this paper.)
Similarly, the final 9 lines of Figure 3 specify
the syntax of edges as they are represented in
GXL XML streams.

5. SCHEMAS FOR TYPED GRAPHS

There are many kinds of graphs that we wish
to exchange, with various types of nodes and
edges and differing attributes. To handle this
range of variabili ty we use E/R diagrams (es-
sentially, UML class diagrams) which we call
schemas, such as the one given in Figure 4.

The GXL schema in Figure 4 specifies the
form of graphs such as the one shown in Fig-
ures 1. This schema specifies that nodes must
have the type Proc or Var and edges must have
the type Call or Ref. Proc nodes have a string
File attribute, while Var nodes have a string
Line attribute. Both Call and Ref edges have
integer Line attributes. Call edges connect
Proc nodes to Proc nodes and Ref edges con-
nect Proc nodes to Var edges. In a similar
way, graphs with other kinds of types, attrib-
utes and connectivity can be specified with
other schemas.

Figure 4. Schema (class diagram) for graphs
like the one in Figure 1.

Since a schema is itself a typed graph, it is can
be encoded in GXL and XML just like any
other graph. Using this encoding, the GXL
notation allows schemas to be exchanged
along with actual data. This exchanging of
schemas allows tools to dynamically configure
themselves to handle the many different kinds
of graphs that are useful in software analysis or
in other fields of study.

6. CONCLUSIONS

This paper has used examples to give a short
introduction to the GXL software exchange
format. Since GXL is convenient for encoding

any kind of typed, attributed, directed graph, it
should be flexible enough to handle a wide
range of source languages, levels of granular-
ity, etc. Furthermore GXL is a standardized
exchange format for any graph based applica-
tion.

In the ICSE 2000 Workshop on Standard
Exchange Formats (WoSEF 2000) [Sim et al.,
2000] GXL was accepted as possible standard
exchange format by numerous research groups
working in the domain of software reengi-
neering and graph transformation from indus-
tries (e.g. Bell Canada (CA), IBM Center for
Advanced Studies (CA), Mahindra British
Telecom (IN), Nokia Research Center (CA),
Phili ps Research (NL)) and academics (e.g.
groups at Universities of Bw München (DE),
Koblenz (DE), Paderborn (DE), Stuttgart (DE),
Victoria (CA), Waterloo (CA)). More details
about GXL can be found in [Holt et al. 2000].

7. REFERENCES

[Ebert et al., 1999] J. Ebert, B. Kullbach, A.
Winter: GraX – An Interchange Format for
Reengineering Tools, in Sixth Working Conference
on Reverse Engineering, IEEE Computer Society,
Los Alamitos, 89-98, 1999.

[Holt et al. 2000] R. C. Holt, A. Winter , A.
Schürr : GXL: Towards a Standard Exchange
Format, Fachbericht Informatik 1/2000, Universität
Koblenz-Landau, Institut für Informatik, Koblenz,
Mai 2000 (http://www.gupro.de/ techreports/RR-1-
2000/).

[Sim et al., 2000] S. E. Sim, R. C. Holt, R.
Koschke: WoSEF Workshop on Standard
Exchange Formats, ICSE 2000 Workshop
proceedings, Limerick 2000 (http://www.cs.
toronto.edu/~simsuz/wosef/)

[W3C, 1998] W3C: XML Working Group, Exten-
sible Markup Language (XML) 1.0, W3C Recom-
mendation, (http://www.w3.org/ TR/1998/REC-
xml-19980210), February, 1998.

