
Noname manuscript No.
(will be inserted by the editor)

Towards Improving Statistical Modeling of Software
Engineering Data: Think Locally, Act Globally!

Nicolas Bettenburg · Meiyappan
Nagappan · Ahmed E. Hassan

Received: date / Accepted: date

Abstract Much research in software engineering (SE) is focused on modeling
data collected from software repositories. Insights gained over the last decade
suggests that such datasets contain a high amount of variability in the data.
Such variability has a detrimental effect on model quality, as suggested by
recent research. In this paper, we propose to split the data into smaller ho-
mogeneous subsets and learn sets of individual statistical models, one for each
subset, as a way around the high variability in such data. Our case study on
a variety of SE datasets demonstrates that such local models can significantly
outperform traditional models with respect to model fit and predictive perfor-
mance. However, we find that analysts need to be aware of potential pitfalls
when building local models: firstly, the choice of clustering algorithm and its
parameters can have a substantial impact on model quality. Secondly, the data
being modeled needs to have enough variability to take full advantage of lo-
cal modeling. For example, our case study on social data shows no advantage
of local over global modeling, as clustering fails to derive appropriate subsets.
Lastly, the interpretation of local models can become very complex when there
is a large number of variables or data subsets. Overall, we find that a hybrid
approach between local and traditional global modeling, such as Multivari-
ate Adaptive Regression Splines (MARS) combines the best of both worlds.
MARS models are non-parametric and thus do not require prior calibration of
parameters, are easily interpretable by analysts and outperform local, as well
as traditional models out of the box in four out of five datasets in our case
study.

Keywords Software metrics · Statistical modeling · Clustering

Nicolas Bettenburg, Meiyappan Nagappan, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University, School of Computing
Kingston, Ontario K1N 3L6 Canada
{nicbet, mei, ahmed}@cs.queensu.ca

2 Nicolas Bettenburg et al.

1 Introduction

Data modeling is an important technique that is frequently employed in em-
pirical software engineering research for studying observations from software
projects. In the past, the foremost application of modeling was to create pre-
diction models [8]. These models describe how a set of product and process
measures can be used to predict another measure (such as the amount of de-
fects in a module, or the development effort needed for a software component)
in a quantitative manner. Modeling has also gained use as a means for under-
standing. Instead of using models solely as a black box, which is fed a set of
measures and outputs a prediction, closer inspection of a model can provide
insights into the underlying processes [6, 8, 23,24].

Regardless of the final goal (understanding or prediction), models are de-
rived from data about the artifact under study. This data is commonly ex-
tracted by mining software repositories. Recent research has shown that sev-
eral software engineering datasets contain a great amount of variability [16,30].
However, we have been using software engineering datasets for model building
as is, without further considering such variability. In this work, we call mod-
els that are learned on a complete dataset, a “global model”, as they take the
complete dataset without taking into account all its inherent variance.

A recent study by Menzies et al. demonstrates, that there lies potential
benefit in partitioning software engineering datasets into smaller subsets of
data with similar properties [20]. Their study showed that training a special-
ized machine learner using subsets of data leads to better fits.

In this study, we investigate whether the findings of Menzies et al. [20]
hold true for commonly used statistical modeling techniques. In particular, we
cluster the complete dataset into smaller subsets with similar data properties,
and build statistical models by training them on these subsets. We call these
models “local models”. Local models might thus have an advantage over global
models (i.e., the traditional way of building models).

We find that local models built through data clustering outperform global
models with respect to both goodness of fit, and prediction performance. How-
ever, we observe that the advantage of such local models is dependent on the
choice of clustering algorithm, tuning of parameters, and the properties of the
underlying software engineering data itself. Our study also demonstrates that
a hybrid approach between global and local models, global models with local
considerations, outperforms both global, and local models, without the need
of tuning or calibration. In addition, global models with local considerations
simplify the interpretation of the predictive model, when compared to their
global and local counterparts.

Towards Improving Statistical modeling of Software Engineering Data 3

1.1 Research Questions and Key Findings

Overall, our empirical study contains six research questions, which we have
grouped into three categories as follows:

1. How can we build and evaluate local statistical models?
We present the use of two categories of evaluation criteria for model evaluation.
First, goodness of fit criteria describe how well the model represents the data
from which it was learned from. Second, model performance criteria describe
how well the model is able to predict new (unseen) data.�

�
�
�

RQ1 (Model Fit): Is there an advantage of using local models over
global models, with respect to goodness of fit?

An increased fit will be beneficial for empirical researchers and practitioners,
when they are using models for understanding. A more granular model that
better describes the data at hand might lead to more insights into the rela-
tionships between the metrics in the dataset and the dependent variable. We
find that a local approach produces considerably better fits for statistical models.

�
�

�
�

RQ2 (Prediction Performance): Is there an advantage of using local
models over global models, with respect to prediction performance?

Models with better prediction performance are of great value to practitioners
since they allow them to take better informed decisions and actions. We find
that the improved local fits do not lead to over-fitted models. The local approach
considerably increases the predictive performance of statistical models, leading
to up to three times lower prediction errors.

2. Are results dependent on the clustering algorithm or the modeled
data?
Any benefit that we might observe with respect to evaluation criteria (RQ1
and RQ2) may be due to the inherent design of local models: a saying among
data scientists states that one sure way to build a better model is to use
less data [14]. We also investigate how the choice of clustering approach and
their individual parameters impacts the fit and prediction performance of local
models.�

�
�
�

RQ3 (Role of Data Partitioning in Local Modeling): What is the
role of clustering of datasets when building local models, as com-
pared to randomly partitioning the data into smaller chunks?

Increased performance of local models may or may not be due to the par-
titioning of datasets into smaller chunks, which in turn lead to better model

4 Nicolas Bettenburg et al.

fits. We observe that in all of our datasets, local models built through random
clustering perform considerably worse with respect to prediction performance
than the corresponding global models, even though they show improved good-
ness of fit. Thus, the superior performance of local models over global models
stems from a smart partitioning of the datasets, i.e., partitioning and grouping
of the data with the goal of finding homogeneous regions in the data.�

�
�
�

RQ4 (Impact of Clustering Approach): What is the impact of choice
of clustering algorithm and parameters on the performance of the
resulting local models?

Machine learning literature has provided a plethora of clustering algorithms
over the past two decades. However, it is not known how the choice of clus-
tering algorithms and their parameters impact local modeling. We find that
certain clustering algorithms yield better performing models than others, pro-
vided that the analyst first carries out a careful analysis of parameters for that
particular algorithm. In environments where resources are limited or a prelim-
inary calibration of parameters is unfeasible, non-parametric clustering offers
a competitive performance for the resulting local models.�

�
�
�

RQ5 (Impact of Data): For the same clustering method, modeling
techniques, and predicted outcome, how do different software engi-
neering metrics respond to local modeling?

We conduct experiments with one additional dataset that we used in the past
to predict post-release failures in software based on code metrics and social
metrics [6]. We aim to investigate to what extent the nature of metrics used
to build models for the same outcome lends itself to the approach of local
modeling. We find that different kinds of metrics, social compared to prod-
uct/process metrics, are not equally suitable for local modeling. Our findings
provide evidence that local modeling of software engineering data relies on cer-
tain distributional properties of the collected metrics, i.e., enough variance in
the data to discern clear cluster boundaries.

3. What are the practical considerations of local modeling?
While we show that local modeling can lead to considerably improved

model fits and prediction performance, the interpretation of local models be-
comes more complicated.�

�
�
�

RQ6 (Local Models in Practice): What are the considerations in
the use of local models over global models for practitioners?

An increase in choices may not necessarily be beneficial to practitioners. In
particular, conflicting recommendations could be potentially misleading and

Towards Improving Statistical modeling of Software Engineering Data 5

prevent models from carrying out the task that they are designed for: to aid
practitioners in decision making. We find that while local models successfully
separate relationships in each local region of the data, interpretation of the local
can quickly become complex. Global models with local considerations are among
the best performing models across our datasets and combine the best of both
worlds (simplicity of interpretation, while still capturing local relationships in
the data.)

1.2 Organization of the Paper

This paper extends our work [7] initially published at the 2012 Working Con-
ference on Mining Software Repositories (MSR’12)1. In particular, our exten-
sions centre around the additional three research questions (RQ3, RQ4, and
RQ5) that expand our understanding of how and why local modeling works.
We discuss the impact of different clustering approaches on local modeling,
and demonstrate that local modeling has a number of requirements on the
data, as well as the analyst, which determine its success and performance.

The rest of this paper is organized as follows: Section II discusses the back-
ground of our study, including related work within empirical software engi-
neering. Section III, illustrates the design of our case study, including data
collection and pre-processing, as well as a discussion of how we derived the
global and local models used in our case study. Section IV, discusses the find-
ings of our case studies along our six research questions. Section V presents our
conclusions, as well as recommendations for future research efforts. Further-
more, Appendix A presents a summary of the metrics used in all case study
datasets. Appendix B presents the full results of our RQ4 and RQ5 experi-
ments.

To allow for easier replication of our work and encourage future research, we
provide all datasets, scripts and analysis steps used to generate the results pre-
sented in this paper in a replication package at http://sailhome.cs.queens.
ca/replication/local-vs-global-emse/.

2 Background and Related Work

Modeling Techniques
The majority of modeling techniques used in empirical software engineering
are borrowed from two research areas: Statistics and Machine Learning. For
instance, Andreou et al. use a machine learning technique called decision trees,
to model and predict the costs involved in software development [3]. Elish et
al. use a machine learning technique called Support Vector Machines (SVM),

1http://www.msrconf.org

http://sailhome.cs.queens.ca/replication/local-vs-global-emse/
http://sailhome.cs.queens.ca/replication/local-vs-global-emse/

6 Nicolas Bettenburg et al.

!

!"#$%

&

'($#)*+)",

-(.),),/01.+.

-$2+),/01.+.

3"4+5.($0'("6$*+07$8"2)+"(9

" #$ #% #& #'

1.+.2$+0

:;< :=<
:><

:?<

Fig. 1: Example of Statistical modeling of Software Engineering Data.

to predict defect-prone modules at NASA [9]. They find that machine learn-
ing techniques exhibit similar performance as statistical approaches for defect
prediction.

One of the most popular statistical modeling techniques is regression mod-
eling. Figure 1 presents a general overview of the modeling process. First, the
data scientist extracts a set of metrics from the software project repository
at hand (Step 1 in Figure 1). These metrics commonly include the objective
that is to be modeled (called the predicted variable, or in statistical terms the
dependent variable), as well as a set of metrics that are believed to stand in
relationship with the objective (these metrics are called the prediction vari-
ables, or in statistical terms, independent variables). For instance, Nagappan
et al. use regression models to predict the defect density of modules (their de-
pendent variable) based on code churn (their independent variable), a metric
of changeability [26].

To prepare the data for training and evaluating the performance of the
model, the data is commonly split into a training set (often 90% of the data)
and a testing set (10% of the data), as illustrated in Figure 1, Step 2. The
model is learned from the training data and the testing data is treated as the
“unseen” data, and in turn used to carry out predictions. Since for each point
in the testing data, the real outcome is already known, analysts can compare
the predicted outcome with the true outcome to obtain a notion of how well
the model predicted.

Next, the data scientist derives a statistical model in the form of a linear or
non-linear equation that describes a plane through the data, which minimizes
the distances between the plane and all data points (Step 3 in Figure 1). There
exist off-the-shelf toolkits, such as the R statistical environment, which provide
readily available algorithms for the derivation of these models from input data.
The analyst can then investigate the model and the variables used (Step 3 in
Figure 1). For instance, Zimmermann et al. built and analyzed models to study
which metrics best describe software defects in the Eclipse project [40].

However, the model can also be used to perform predictions of unseen data
(Step 4 in Figure 1), i.e., data from a different release or different project [36,
39], or as a form of apparent validation, from part of the original data (i.e.,
the testing set), as illustrated in Figure 1.

Towards Improving Statistical modeling of Software Engineering Data 7

Modeling Goals
Models have been widely used in the area of empirical software engineering
research. Analysts build models mainly for two purposes: prediction and un-
derstanding. For instance, Nagappan et al. computed source code complexity
metrics for individual modules of 5 commercial software projects and used
combinations of these complexity metrics to predict the future failure proba-
bility of modules [27]. They were able to find a suitable prediction model for
each of the projects, but could not find a common set of metrics that worked
across all projects. Similarly, Mockus et al. studied the use of linear regression
models to predict the risk of source code changes [23].

Prediction models can also be fine-tuned with respect to additional con-
straints. For example, in recent work, Kamei et al. [16] present the use of
product and process metrics with the goal of effort-aware modeling of soft-
ware defects for the Eclipse project.

At the same time, models can be used to gain an understanding of why
certain outcomes occur. For instance, Mockus et al. use statistical models to
understand the relationships between observations on the software process and
how customers perceive the quality of the product [25]. A similar approach was
used in a study by Mockus et al. to investigate how changes impact the overall
software development effort [24].

Modeling Approaches
Researchers in empirical software engineering have typically built global mod-
els to predict development effort and software defects with high accuracy [23],
as well as for understanding software engineering phenomena [6,24]. However,
recent research suggests that empirical software engineering should focus more
on context specific principles. In particular Menzies et al. advise that future
work in empirical software engineering should explore lessons learned from
individual subsets in contrast to lessons learned across the whole data [20].

A similar issue was also recently raised in the works of Kamei et al. and
Nguyen et al. [16, 28], who identify potential bias in performance metrics of
defect prediction models, depending on the aggregation granularity of the
data used for building the prediction model. Similarly, Posnett et al. [30] con-
firmed the existence of granularity bias and demonstrate that decomposition
of datasets at the wrong granularity level can lead to misleading and fallacious
results.

Research Context
The research most closely related to this paper, is the work by Menzies et al.,
who demonstrate that for their WHICH treatment machine learner, a parti-
tioning of data along the axis of highest data variability using their custom
built WHERE clustering method, led to a better fit of WHICH to the under-
lying datasets [20]. Based on their findings, the authors recommended further
investigation of local vs. global approaches in empirical software engineering
research. We follow this call with the study at hand.

8 Nicolas Bettenburg et al.

We identify key differences between the work by Menzies et al. [20] and our
study below:

First, we follow the idea of data partitioning into local regions within the
context of building statistical linear regression models. Our study investigates,
whether off-the-shelf technology that is readily available for practitioners and
researchers can experience the same benefits of data partitioning as specialized
methods, such as the WHERE clustering method.

Second, in addition to evaluating goodness of fit (how well a model cap-
tures the data from which it was trained on), we also perform predictions in
an experimental setup that closely resembles how practitioners would use the
approach. Furthermore, we evaluate our results through a multiple run cross-
validation setup and investigate the effect of data partitioning on prediction
performance along multiple performance criteria.

Relative to prior work, our paper makes the following contributions:

First, we build two types of models: global and local, and perform compari-
son between both types. In addition, our study introduces a third approach:
global models with local considerations, which can be considered as a hybrid
between global and local models. In particular we use the well-studied imple-
mentation of Multivariate Adaptive Regression Splines [13] (MARS). MARS
models have found extensive and successful use in modeling problems in out-
side of the empirical software engineering field, such as economics [29], and
genetics [38].

Second, we investigate the impact of different clustering approaches for learn-
ing local models on model fit and performance. Furthermore, we study how
different clustering algorithms, and parameters affect local model performance.
In contrast to previous research in the area of building prediction models us-
ing less data [17], we work under the premise of using a full data set such
that intelligent subdivision of that data through clustering creates meaningful
subsets.

Third, our study provides evidence that not all datasets can equally benefit
from local modeling. In particular we compare and discuss post-release de-
fect modeling across open-source projects under the umbrella of the Eclipse
platform through local models based on code complexity metrics, as well as
social metrics. We find that the lack of variance in the social metrics leads
to weak clustering performance which in turn leads to local models having no
performance advantages over their global model counterparts.

Fourth, we discuss practical considerations of local modeling and interpreta-
tion of models. In particular, our work makes a strong case for the benefits
of using a hybrid approach, global models with local considerations, which
combines the advantages of local and global modeling: easy interpretation of
global models, and capturing of datasets localities, like local models.

Towards Improving Statistical modeling of Software Engineering Data 9

3 Case Study Design

In this section we discuss the design of our case study on six different datasets.
We begin with a general discussion of the data, followed by a detailed descrip-
tion of our experimental setup, including the used experimental design and
modeling approaches.

3.1 Data Collection and Preparation

Four of the datasets used in our case study, Xalan 2.6, Lucene 2.4, CHINA and
NasaCoc, have been obtained from the PROMISE 2 repository, and have been
reported to be as diverse of datasets as can be found in this repository [20].
Since we have not collected the data ourselves, we cannot guarantee perfect
data quality. However, the PROMISE repository is a source of curated data
sets that are widely used in a plethora of empirical software engineering re-
search [21], and as such the obtained data is as close to a benchmark as we
could find in this research domain. Furthermore, the same datasets have been
used in the previous study by Menzies et al. when investigating the benefit
of data partitioning into local regions for their machine learning approach. In
particular, we obtained two datasets concerned with defect prediction (Xalan
2.6 and Lucene 2.4), as well as two datasets concerned with effort prediction
(CHINA, and NasaCoc). For a complete set of descriptions of the variables in
each of the four PROMISE datasets, we refer the interested reader to [20].

The Eclipse datasets containing code metrics and social metrics was re-
used from our earlier work [6]. The Eclipse data was collected for a period of
6 months surrounding the release of version 3.0. It contains observations at
file-level granularity and the model objective is post-release defects that were
reported by users and developers for a period of 6 months following the 3.0
release. A summary of the obtained data is shown in Table 1. Additionally,
Appendix A provides a complete list of metrics contained in each dataset.

All datasets are complete, i.e., we have checked that they do not suffer
from missing data. However, a threat to the validity of the study at hand is
the presence of noise and outliers. We have not removed noise or performed
any other kind of outlier analysis and removal. Thus, all the statistical mod-
eling presented in this paper fits the whole data, including possible noise and
outliers, and clustering techniques will also be impacted by these irregularities.

Correlation Analysis
The goal of this work is to study local and global modeling under the frame-
work of regression modeling. However, multi-collinearity between predictor
variables is one of the major factors impacting regression model building and
model quality. Thus, to prepare each of the datasets for use in our statisti-
cal modeling experiments, we first carry out a correlation analysis. For each

2http://promisedata.org

http://promisedata.org

10 Nicolas Bettenburg et al.

Table 1: Summary of datasets used in our case study.

Dataset Modeling Of Metrics Datapoints
Xalan 2.6 Defects 23 885
Lucene 2.4 Defects 23 340
CHINA Development Effort 19 499
NasaCoc Development Effort 27 154
Eclipse Code Metrics Defects 37 8,696
Eclipse Social Metrics Defects 21 8,696

dataset, we start from a complete dataset, and carry out an analysis to de-
tect potential multi-collinearity between the metrics (columns) in the datasets.
Previous research [5,35] has demonstrated that many process and source code
metrics are correlated, both with each other, and with lines of code (LOC).
Ignoring such correlations would lead to increased errors in the estimates of
model performances, and to increased standard errors of predictions [14]. For
all datasets, we observed moderate to high correlation between two or more
predictor variables.

VIF Analysis
Within the same vein of prior research, we handle multi-collinearity through
analysis of Variance Inflation Factors (VIF) for each dataset [10]. The goal
of VIF analysis is not to obtain a best set of predictors, but to reduce correla-
tions between predictor variables before attempting any statistical modeling.
We iteratively compute VIF measures for all variables and then remove the
variable with the highest VIF value, until no variable has a VIF measure higher
than 5 [10]. The VIF analysis leaves us with a reduced set of variables in each
dataset. For instance, the VIF analysis removed the variables CBO, wmc, rfc,
and amc from the Xalan 2.6 dataset, and the variables CBO, wmc, rfc, and loc

from the Lucene 2.4 dataset. Furthermore, the VIF analysis removed the vari-
ables NPDU UFP, AFP, PDF AFP, NPDR AFP, and Added in the CHINA dataset,
and the variables defects, and tool from the NasaCoc dataset. A complete
list of variables left after VIF analysis is provided in Appendix A.

3.2 Model Building Approach

An overview of our approach to build the models used in our case study is
illustrated in Figure 2. For all three types of models (global, local, global
with local considerations), we start the modeling process by first splitting the
dataset into training and testing data. These splits contain 90% and 10% of
the dataset respectively. The model is learned on the training data, while
predictions using the model are carried out on and compared to the testing
data. We detail below how we derive each type of model from the training
data.

Towards Improving Statistical modeling of Software Engineering Data 11

Dataset

M

Global Prediction Model

X

Prediction

G
lo

b
a
l
M

o
d

e
ll
in

g

Testing Data

Clustered Training Data

M1

M2

M3

Local Prediction ModelClusterer

X

Prediction

Y

Prediction

L
o

c
a
l
M

o
d

e
ll
in

g

Training Data

Testing Data

Fig. 2: Overview of our approach for building global and local regression models. This

process is repeated 10 times.

Global Models

We use statistical modeling, in particular linear regression, to build global
models. In general, linear regression models attempt to find the best fit of
a multi-dimensional line through the data, and they are of the form Y =
ε0 + α1 ∗ X1 + · · · + αn ∗ Xn, with Y the dependent variable, ε0 called the
intercept of the model, αi the i-th regression coefficient, and Xi the i-th inde-
pendent variable. In particular, Y denotes the measure that we want to predict
(number of bugs for each file in the case of the defect prediction datasets, total
development effort for CHINA, and the number of months required to develop
the software component for NasaCoc), and Xi denotes the metrics on which
we base our predictions.

Local Models

To build local models, we use linear regression, similarly to building global
models. However, the main difference is that the data is first partitioned into
regions with similar local properties using a clustering approach, before the
data is split into training and testing sets. For each data point, we record a
unique identifier that corresponds to the cluster that data point is associated
with.

The final local model is obtained by creating individual regression models
of the form Y = ε0+α1∗X1+ · · ·+αn∗Xn for each local region of the training
data (clusters). To carry out predictions on the testing data using local models,
we use the previously recorded cluster association of each testing data point.

12 Nicolas Bettenburg et al.

For each entry in the testing data, we use the local model that has been fitted
to that particular cluster, and carry out the individual predictions.

For the experiments discussed in RQ1 and RQ2, we use a state-of-the-art
distribution-based non-parametric clustering technique called MCLUST [12].
This technique automatically derives all necessary parameters within the tech-
nique itself, and partitions a dataset into an approximately optimal number
of subsets based on the variability in the data [11]. The choice of MCLUST
was based on the clustering technique being a non-parametric technique, i.e.,
there is no prior need for selection and calibrations of parameters.

However, non-parametric clustering might not unlock the full potential of
local modeling. Hence, for the experiments discussed in RQ3 and RQ4, which
aim to explore how different clustering techniques impact local modeling, we
add two additional clustering techniques, called k-means [15] and hierarchi-
cal clustering [18]. Both are parametric clustering techniques, which allow the
analyst to further refine the clusters through parameters. The k-means clus-
tering technique partitions the dataset into k clusters (the analyst provides
the parameter k), such that each point of the data is associated with the
cluster to which the distances between the centre of that cluster and the ob-
servation is minimized. K-Means is a heuristic clustering algorithm and finds
a locally optimal solution. For this reason we repeat the experiments that
involve k-means clustering multiple times to account for randomization bias.
For k-means clustering, we use the R language implementation, named kmeans,
which is provided in the stats package.

For hierarchical clustering, we use an agglomerative (bottom up) algorithm,
where each observation in the dataset starts in its own cluster and at each it-
erative step of execution, pairs of clusters get grouped together based on the
distance of their centres in a hierarchical manner. The output of the hierarchi-
cal clustering algorithm is a tree (similar to a dendrogram). The tree can then
be cut at any level in the hierarchy and the analysts commonly provides the
parameter h, which denotes that the tree should be cut at a particular level of
the hierarchy, such that h separate clusters are obtained. For hierarchical clus-
tering we use the R language implementations of hclust to build the tree, and
the cutree method to cut the tree; both are provided in the stats package.

When building local models through clustering, we cannot guarantee that
every predictor variable in each cluster can be used in a local regression model.
That is, we run into the problems that two predictors might exhibit perfect
correlation, which in turn leads to singularities when building the statistical
model, i.e., the correlation coefficients for that predictor cannot be computed
and is undefined . To solve this problem, we use a predictor selection approach
based on the Bayesian Information Criterion (BIC) [34], called Bayesian Model
Averaging (BMA) [31]. In particular, we apply BMA to each data cluster to
determine the set of predictor variables that we used when building the lo-
cal model for that cluster. The result of BMA is a set of variables, for which
a metric of BIC on the data has an optimum value. We want to note that
BMA is not used to select a “best” set of prediction variables (Menzies et al.
have demonstrated that there are different sets of best predictors in different

Towards Improving Statistical modeling of Software Engineering Data 13

datasets [22]), but to select a set of valid variables for each cluster, such that
modeling would not run into singularities.

Global Models with Local Considerations

We use Multivariate Adaptive Regression Splines [13], or MARS, models, as
an example of a global model that takes local considerations of the dataset
into account. MARS models have become increasingly popular in medical,
and social sciences, as well as in economical sciences, where they are used with
great success [4, 29,38].

A MARS model has the form Y = εo + c1 ∗ H(X1) + · · · + ci ∗ H(Xn),
where Y is the dependent variable (that is to be predicted), ci is the i-th
hinge coefficient, and H(Xi) the i-th “hinge function”. Hinge functions are
an integral part of MARS models, as they allow to describe non-linear rela-
tionships in the data. In particular, they cluster the data into disjoint regions
that can be then described separately (our notion of local considerations).
In general, hinge functions used in MARS models take on the form of either
H(Xi) = max(c,Xi − c), or H(Xi) = max(c, c − Xi), with c being some
constant real value, and Xi an independent (predictor) variable.

A MARS model is built in two separate phases. In the forward phase,
MARS starts with a model which consists of just the intercept term (which is
the mean of the independent variables). It then repeatedly adds hinge func-
tions in pairs to the model. At each step it finds the pair of functions that
gives the maximum reduction in residual error. This process of adding terms
continues until the change in residual error is too small to continue or until a
maximum number of terms is reached. In our case study, the maximum num-
ber of terms is automatically determined by the implementation, and is based
on the amount of independent variables we give as input. For MARS models,
we use all independent variables in a dataset after VIF analysis (similar to the
other modeling approaches).

The first phase often builds a model that suffers from overfitting. As a
result, the second phase, called the backward phase, prunes the model, to
increase the generalization ability of the model. The backward phase removes
individual terms, deleting the least effective term at each step until it finds
the best sub-model. Model subsets are compared using a performance criterion
specific to MARS models, and the best model is selected and returned as the
final model.

MARS models have the advantage that a model pruning phase is already
built-in by design, so we do not need to carry out a model pruning step similar
to BIC, as we do with global and local models. Second, the hinge functions
in MARS models do already model disjoint regions of the dataset separately,
such that there is no need for prior clustering of the dataset with a clustering
algorithm. Both advantages make this type of modeling approach considerably
simpler to use in practice.

14 Nicolas Bettenburg et al.

3.3 Countering Randomization Bias

For better generalizability of our results, and to counter random observation
bias, the experiments described in RQ1 and RQ2 are repeated 10 times on
stratified random sub-samples of the data into training (90% of the data)
and testing (10% of the data) sets. The stratification is carried out on the
metric that is being modeled. For example, for dataset Xalan 2.6, this would
correspond to the defects metric. We then learn the model from the training
data, evaluate the fit of the model to the training data, and evaluate the
prediction performance on the testing data. We repeat that process ten times
and evaluate all our findings based on the average over these 10 repetitions.
This practice of evaluating results based on multiple runs when randomness is
involved, is a common approach in Machine Learning, and is often referred to
as “10-times cross validation” [37]. As an important factor to the comparability
of local and global modeling, we want to note that regardless of the approach
(local, or global), we always obtain a random sample of 90% of the overall
dataset for training and 10% of the data for testing, i.e., the size of training
and testing data is always the same.

For the experiments described in RQ3, RQ4 and RQ5, we have more control
points that allow for random bias (e.g., parameters passed to the parametric
clustering techniques). To counter random effects, we repeat our experiments
such that we obtain a confidence interval of less than 3% with a confidence
level of 99%, i.e., we can be 99% sure that the results are within a range of
plus/minus 3% of the reported values. More details on the repeated execution
of these experiments is discussed under the respective research questions.

In all cases where we performed multiple statistical significance tests, we
used the Bonferroni correction [33] to avoid the spurious discovery of significant
results due to multiple repeated tests.

4 Results

In this section, we present the result of our case study. This presentation is
carried out in individual subsections that follow our six research questions. For
each part, we first describe our evaluation approach, and discuss and interpret
our findings.

RQ1. Is there an advantage of using local models over global models,
with respect to goodness of fit?

Our aim in this question is to evaluate the goodness of fit of the models
produced by each of the three modeling approaches. In general, a goodness
of fit measure describes how well the model describes the observations in the
data from which it was learned. The goodness of fit measure is of specific
importance for software engineering research that wants to use models as a
means of understanding underlying processes.

Towards Improving Statistical modeling of Software Engineering Data 15

For example, if one were to investigate the relationships between post re-
lease defects and source code complexity, a regression model with post release
defects as the dependent variable, and complexity measures as independent
variables could be used. However, if the corresponding statistical model showed
a low goodness of fit measure, insights derived from the investigations of the
model are in the best case misleading (and in the worst case wrong).

Approach
We divide each dataset into training data and testing data, and learn a global
model, a local model, and a global model with local considerations from the
training data, as outlined in Section 3.2. A commonly used goodness of fit
measure for linear regression models is the coefficient of determination, R2.
In general, R2 measures the amount of variability in the data described by
the linear regression model, or in other words, how close the fitted regression
model is to the actual values in the dataset.

However, past research has demonstrated that R2 should not be used to
compare different regression models, as the R2 measure is highly biased to-
wards the number of independent variables in a model [14]. The more inde-
pendent variables the regression model contains, the higher its R2 measure
will be, even if the independent variables do not describe the dependent vari-
able in any meaningful way. Instead of using R2, we use two different goodness
of fit measures that have been proposed in literature as our evaluation criteria.

Evaluation Criteria
1. Akaike Information Criterion (AIC) To judge the goodness of fit between
global models and local models, we use the Akaike information criterion [2]
(AIC), which is a fit measure based on information entropy. One of the main
advantages over the traditional R2 measure for goodness of fit of a regression
model, is the robustness of AIC against bias due to using more independent
variables in a model. AIC is widely used to judge the relative goodness of fit
between different regression models [31].

In general, a lower AIC measure corresponds to a better model fit to the
data. Results corresponding to this measure are presented under the name AIC
throughout this paper. We want to note, that for MARS models, the Akaike
information criterion is not available as a relative measure of goodness of fit, so
we cannot compare MARS models directly. Hence, we use the other criterion
described below to compare across all three types of models.

2. Correlation between predicted and actual values on trained data (FitCor)
In addition to the AIC measure for goodness of fit, we measure how well a
model was able to learn from the training data. For this purpose, we feed
the same training dataset into the model again to predict values, and finally
measure the (Pearson) correlation between actual values and predicted values.
This measure of correlation is of particular importance for prediction models.

For example, in the case of defect prediction, models are often not con-
cerned with the absolute number of post-release defects, but rather in a rank-

16 Nicolas Bettenburg et al.

Table 2: Case study results: goodness of fit for global models. For AIC, smaller is better,

for Correlation (FitCor), higher is better. We find that local modeling provides better model

fits over global modeling. Global models with local considerations (MARS) provide the best

fits of all three modeling approaches. Best values are marked in bold.

Global Local MARS
Dataset AIC FitCor AIC FitCor FitCor
Xalan 2.6 2,190.30 0.33 352.98 0.52 0.69
Lucene 2.4 1,380.35 0.32 462.43 0.60 0.83
CHINA 8,696.17 0.83 1,805.06 0.89 0.89
NasaCoc 858.95 0.93 158.37 0.97 0.99
Eclipse 3.0 19,575.91 0.62 5,701.08 0.37 0.67

ing of source code entities from “most buggy” to “least buggy” [26]. Resources
and testing effort are then allocated according to that ranking. Results cor-
responding to this measure are presented under the name FitCor throughout
this paper.

For both goodness of fit criteria, we need to normalize values for local mod-
els across clusters. For instance, consider the following case. Imagine, MCLUST
would cluster a dataset into six clusters, of which one cluster C1 contained 90%
of the data and the other five clusters C2 to C6 each contained 2% of the data.

Now, suppose a hypothetical goodness of fit measure for C2 to C6 of 0.9,
and 0.05 for C1. The median goodness of fit in this case would turn out to be
0.9, greatly underestimating the contribution of cluster C1 which contains the
majority of the data. To counter this bias, we normalize by the size of each
cluster relative to the size of the complete (training) dataset.

Findings

Table 2 summarizes the results of our experiment. Overall, we observe that
local models exhibit a better relative goodness of fit measure (AIC) than global
models on corresponding datasets.

The same observation holds true for the analysis of fit correlation (FitCor).
Our analysis of the correlation suggests, that MARS models produce very
good fits to the underlying data, outperforming both, global models, as well
as local models. This further strengthens our conjecture of the advantages of
local over global modeling.

To test for the statistical significance of the differences between measured
fit correlations, we performed a Fisher’s Z-test with the null hypothesis H0:
the means of the distributions of measured fit correlations over our 10 repeti-
tions are the same. We reject that hypotheses at p < 0.01 and found that all
differences were statistically significant, except in one case the fit correlation
of the local model and the MARS model for the CHINA dataset (in both cases
the fit correlation means were 0.89).

Towards Improving Statistical modeling of Software Engineering Data 17�
�

�
�

Overall, the results of our case study confirm that in the context of
regression models for modeling defect and effort data, local models
lead to considerably better fits to the underlying data.

RQ2. Is there an advantage of using local models over global models,
with respect to prediction performance?

In the second part of our evaluation, we aim to investigate the actual per-
formance of the models when applied on unseen data, i.e., prediction models.
Better performing models are of great value to practitioners since they allow
them to take better informed decisions.

Approach

To evaluate the prediction performance of each of the three modeling ap-
proaches, we follow the same steps of model building described in Section
4-RQ1. We divide each dataset into training data and testing data, and learn
a global model, a local model, and a global model with local considerations
from the training data.

Next, we use the testing data as input to these models to obtain predic-
tions. For global models and global models with local considerations, we can
directly take each row in the testing data as an input to the linear function
that describes the model. For local models, we know for each datapoint in
the testing set the corresponding cluster that point was assigned to initially,
and then use the corresponding local model from that cluster to carry out the
prediction (ref. Section 3.1). We compare these predicted values to the actual
values recorded in the testing data, and evaluate performance based on three
different criteria. These criteria are discussed in detail below.

Evaluation Criteria

1. Absolute sum of prediction error (ErrorSum)

The sum of all prediction errors
∑
abs(Yactual − Ypredicted) tells us how good

the model performed overall in predicting the testing data. The closer the
sum of prediction errors is to 0, the better the predictive performance of the
model. This performance criterion is of importance to practitioners as it gives
an indication of how good a model captures reality. Results corresponding to
this measure are presented under the name ErrorSum throughout this paper.

2. Median prediction error (MedianError)

This performance criterion tells us about the central tendency of prediction
errors, i.e., how far off predictions were from the actual value across all pre-
dictions. The closer this measure is to 0, the closer predictions of the model
are to the true value recorded in the dataset. In general, this criterion can be
seen as the predictive accuracy of the model. Results corresponding to this

18 Nicolas Bettenburg et al.

Table 3: Summary of experimental results on models’ predictive performance. The best

observations in each column are marked in bold font face. Stars denote that the best value is

statistically significant from the others at p < 0.01. Local Models outperform Global models

in three datasets. Global Models with local considerations provide best performance across

all datasets.

Global Models
Dataset ErrorSum MedianError RankCor
Xalan 2.6 61.07 0.64 0.36
Lucene 2.4 49.72 1.15 0.71
CHINA 91,592.52 765.00 0.82
NasaCoc 48.75 3.26 0.95
Eclipse 3.0 340.89 0.10 0.59*

Local Models
Dataset ErrorSum MedianError RankCor
Xalan 2.6 57.35 0.52 0.50
Lucene 2.4 55.15 1.15 0.67
CHINA 83,420.53 552.85 0.85
NasaCoc 41.49 2.14 0.95
Eclipse 3.0 389.77 0.18 0.57

Global Models with Local Considerations
Dataset ErrorSum MedianError RankCor
Xalan 2.6 50.90* 0.40* 0.56*
Lucene 2.4 43.61* 0.94* 0.72
CHINA 25,106.00* 234.43* 0.99*
NasaCoc 26.95* 1.63* 0.97*
Eclipse 3.0 342.85 0.10 0.56

measure are presented under the name MedianError throughout this paper.

3. The correlation between predicted and actual values (RankCor)

This performance criterion is of particular interest for defect prediction, as it
measures the extent to which the model is able to discern a correct ranking of
defective files (from most risky to least risky), which for example, in practical
applications of defect prediction models is often used for resource allocation.
Similarly to the FitCor metric, we use the Pearson correlation coefficient. Re-
sults corresponding to this measure are presented under the name RankCor

throughout this paper.

Findings

The results of our prediction experiments are summarized in Table 3. Overall,
we observe from Table 3 that the local models outperform the global models
in three out of five datasets, Lucene 2.4 and Eclipse 3.0 being the exceptions.
However, the global model with local considerations outperforms both the
global model and the local model in all five datasets.

Figure 3 illustrates a comparison of the distributions of prediction errors
across all 10 runs on the example of two effort prediction (China, NasaCoc)
and two defect prediction (Xalan, Lucene) datasets. We observe similar results
for the Eclipse 3.0 dataset. Overall, we find that the local model outperforms

Towards Improving Statistical modeling of Software Engineering Data 19

!!
!!
!!
"#
$%
"&
'
$"
(
)
*(
+*
,
%-
.
"/
$"
(
)
*0
%%
(
%#

122

322

422

522

6222

1

3

4

5

789:;

!

! !

:<#<7(/
!

=;>? @ABC;A AB7;A

2D5

2DE

6D2

6D6

6D1

6DF

6D3

6DG

2DF2

2DFH

2D3G

2DGF

2D41

2DH2

AI70:0*1D3

!!

J;A;:*1D4

!

=;>? @ABC;A AB7;A

Fig. 3: Distributions of predictions errors for each dataset and modeling approach. Local

modeling provides significant improvements of global modeling in three cases and com-

parable performance in one case (Lucene dataset). Furthermore, global models with local

considerations (MARS) shows the lowest maximal prediction error.

the global model in three out of five cases, and in one case (Lucene 2.4) shows
comparable performance.

At the same time, the global model with local considerations (denoted as
MARS) demonstrates a considerably lower median prediction error distribution,
which in three out of four cases has a shorter quartile range than both other
approaches, i.e., predicted values are closer to the true values recorded in the
testing data, and additionally, the worst predictions are less far off from the
true values than in the other two modeling approaches.

We use the Mann-Whitney-U test, a two-sided non-parametric statistical
test to compare two distributions, to confirm that the differences in the dis-
tributions of prediction errors are statistically significant from each other (at
p ≤ 0.01). The only difference that was not deemed statistically significant is
in the case GLOBAL vs. LOCAL in the Lucene 2.4 dataset.

Table 3 also shows that local models provide a better ranking than global
models in two out five datasets, and as good a ranking in one instance, and
slightly worse ranking in two instances. The global model with local consid-
erations is able to provide the best ranking of predictions in four out of five
instances, with the Eclipse 3.0 dataset being the only exception.

20 Nicolas Bettenburg et al.�

�

�

Our results demonstrate, that local modeling lead to significant im-
provements in prediction errors over global modeling. Global Mod-
els with local considerations demonstrated the best performance in
terms of overall prediction error, as well as greatly improved worst
case predictions.

RQ3. What is the role of clustering of datasets when building local
models?

So far we have demonstrated that splitting larger software engineering datasets
into smaller chunks of homogeneous data and learning separate models for
each individual chunk leads to an increase in goodness of fit and prediction
performance over traditional models that act on the whole dataset.

However, the observed increase in fit and performance of local models may
or may not be due solely to the clustering of datasets into smaller chunks,
which in turn leads to better model fits. For instance, Harell et al. [14] note
that using smaller datasets is often directly connected to improved model fit.

In this question we demonstrate that the observed performance increase
is not due to arbitrary splitting of the data with the goal to produce smaller
subsets of the data to learn from, but due to chunking with the goal of finding
and grouping those observations that have similar properties, by the use of a
clustering algorithm.

Approach
To investigate the role clustering plays when building local models, we devised
a particular experimental setup that centres around randomly assigning ob-
servations (rows) in our datasets to clusters. The reasoning here is to study,
whether the improved performance of local models is due to the reduction of
the number of data points to which models need to be fitted. In particular,
our experiment follows the steps below.

1. We select a number, max k, between 1 and 10. This number max k denotes
the number of clusters that we will subdivide a dataset into during this
single run of the experiment. A choice of max k = 1 is equivalent to no
clustering (i.e., building a global model).

2. For each observation i in our dataset, we randomly select a number ki
between 1 and max k with equal probability, and record this number as an
additional column in the dataset. Every ki records a random assignment
of a particular observation in the data to a cluster, for a single run of the
experiment.

3. We randomly subdivide the data into a training dataset, which contains
90% of all observations in the data, and a testing dataset, which contains the
remaining 10% of observations that are not part of the training dataset. For
each single run of the experiment, we randomly select a different division
into training and testing data.

Towards Improving Statistical modeling of Software Engineering Data 21

4. We group all observations in the training dataset by the associated value
ki ∈ [1..max k] to which they were assigned earlier. For each cluster (j ∈
[1..k]) we learn a linear regression model mj and record the model in a
mapping from j to mj .

5. For each model mj we calculate the goodness of fit metrics on the model
through measures of AIC and fit correlation, in the same approach as
presented during the discussion of RQ1 in Section 4.1.

6. For each observation in the testing dataset, based on the associated value
ki, we know to which cluster that observation was assigned, initially. We
use the data of this observation to predict the outcome with the corre-
sponding local model for that cluster mj , where j = ki. We then record

the difference between the predicted outcome Ŷ and the actual outcome Y
as it is recorded in the dataset to find the absolute prediction error.

7. We calculate the prediction performance criteria similar to those presented
in the discussion of RQ2 in Section 4.2. In particular, we record the absolute
prediction sum across all made predictions, the median prediction error,
and the correlation in ranking between predicted and actual values.

We repeat the above experiment (Steps 1-7) a total of n=10,000 times, which
corresponds to 1,000 repetitions for each choice of j ∈ [1..maxk], with maxk =
10. Since our experiment is carried out in a random fashion, the results of the
experiment concerning goodness of fit and prediction performance may vary
depending on the selection of k and the subdivision of data into training and
testing sets.

To counter the effect of such randomness, it is not sufficient to perform a
10-fold cross validation as we did earlier. To get accurate experimental results,
we estimate means and confidence intervals of the results through the use of
the Wilcoxon signed rank test.

We have performed an initial calibration of the experiment with varying
values for n to determine a choice of n that would yield a confidence interval
smaller than 3% and found that for n = 1, 000 repetitions of the experiment
for each k fulfills this criterion.

We recorded the average size of the confidence interval as 1.6% at a 99%
confidence level, i.e., for each result that we report in the following, 99% of
values observed in random experiments lie in a range of plus/minus 1.6% of
the reported result.

Evaluation Criteria
We use the same evaluation criteria presented in RQ1 for judging goodness of
fit, and the same evaluation criteria presented in RQ2 for judging prediction
performance of a model.

Findings
The results of this experiment are summarized in Tables 4 and 5. In the fol-
lowing we discuss our findings in two parts: the first part details our findings
related to the goodness of fit of the models to the training data, and the second

22 Nicolas Bettenburg et al.

Dataset Metric k=1 k=2 k=3 k=4 k=5

AIC 1,254.54 622.90 332.27 307.14 277.59
FitCor 0.44 0.45 0.47 0.50 0.52

Lucene Error Sum 46.84 49.59 53.28 56.15 60.07
MedianError 1.04 1.07 1.11 1.15 1.23
RankCor 0.42 0.38 0.37 0.34 0.31

AIC 2,003.14 1,004.61 531.34 498.81 455.97
FitCor 0.40 0.41 0.42 0.42 0.43

Xalan 2.6 Error Sum 58.74 59.41 60.60 61.45 63.01
MedianError 0.48 0.48 0.49 0.49 0.50
RankCor 0.38 0.36 0.35 0.34 0.32

AIC 8,492.95 4,222.85 2,207.91 2,072.71 1,913.38
FitCor 0.70 0.67 0.66 0.66 0.65

CHINA Error Sum 121,096.20 130,887.50 138,033.50 141,708.60 147,038.50
MedianError 893.30 1,015.36 1,096.41 1,150.72 1,182.77
RankCor 0.69 0.67 0.65 0.63 0.62

AIC 826.25 398.77 216.23 186.91 160.27
FitCor 0.76 0.78 0.80 0.83 0.85

NASACOC Error Sum 71.73 77.58 87.57 118.31 272.22
MedianError 3.04 3.16 3.31 3.69 4.22
RankCor 0.74 0.70 0.67 0.60 0.52

AIC 19,198.89 9,458.64 4,900.63 4,595.93 4,263.68
FitCor 0.29 0.29 0.29 0.29 0.29

Eclipse 3.0 Error Sum 333.44 338.97 342.43 345.96 350.62
MedianError 0.10 0.10 0.10 0.10 0.11
RankCor 0.29 0.28 0.27 0.27 0.27

Table 4: Building local models through random cluster assignment. Increasing
k (number of clusters) leads to better model fits, however, prediction perfor-
mance becomes increasingly worse.

part details our findings related to the prediction performance of models.

1. Goodness of Fit
We observe that the AIC measure decreases when building local models through
random clustering, for increasing choices of k. Again, a lower value of AIC de-
notes a better fit of the model. This holds true for all datasets. Furthermore,
in all datasets, except CHINA, we observe an increase in fit correlation with
increasing k.

Overall, we find that clustering of data into smaller chunks leads to a bet-
ter measure of goodness of fit of models irrespective of the used clustering
approach (random clustering). This result is not surprising, as the smaller
chunks contain fewer data points through which the linear model needs to
be fitted through, leading to less occurrences for outliers that are far off the
regression line and thus we see a better fit to the underlying training data.

2. Prediction Performance
We observe in Tables 4 and 5 that in no single case does a local model (k ≥ 2)
built through random cluster assignment outperform the corresponding global
model (k = 1).

Furthermore, for all datasets, we observe a decrease in prediction perfor-
mance with regards to all three performance measures, with increasing num-
ber of clusters k. Figure 4 illustrates this property on the example of the
NASACOC dataset for local models built through random clustering with in-
creasing choices of k.

Discussion
Both findings together are striking: first, our results demonstrate that when

Towards Improving Statistical modeling of Software Engineering Data 23

Dataset Metric k=6 k=7 k=8 k=9 k=10

AIC 224.27 190.93 164.05 145.04 127.35
FitCor 0.54 0.56 0.59 0.61 0.64

Lucene ErrorSum 64.98 70.65 81.86 97.32 113.05
MedianError 1.28 1.35 1.42 1.54 1.64
RankCor 0.29 0.27 0.25 0.22 0.21

AIC 370.61 313.19 269.72 237.03 211.33
FitCor 0.44 0.45 0.46 0.47 0.48

Xalan 2.6 ErrorSum 64.46 65.63 67.65 69.74 71.05
MedianError 0.50 0.50 0.51 0.52 0.52
RankCor 0.31 0.30 0.29 0.28 0.27

AIC 1,542.37 1,296.49 1,111.36 975.12 866.50
FitCor 0.65 0.65 0.65 0.66 0.66

CHINA ErrorSum 151,430.90 154,368.20 158,393.70 161,217.10 166,324.10
MedianError 1,215.17 1,231.59 1,231.30 1,281.43 1,312.92
RankCor 0.61 0.60 0.59 0.58 0.57

AIC 125.27 98.05 63.57 26.31 3.41
FitCor 0.87 0.90 0.92 0.95 0.97

NASACOC ErrorSum 389.98 537.98 1,017.08 1,552.96 2,085.86
MedianError 5.03 6.20 9.45 14.79 21.30
RankCor 0.46 0.38 0.29 0.22 0.17

AIC 3,407.48 2,833.42 2,416.07 2,107.10 1,866.15
FitCor 0.29 0.29 0.29 0.29 0.29

Eclipse 3.0 ErrorSum 355.53 359.46 363.67 368.83 373.26
MedianError 0.11 0.11 0.11 0.11 0.12
RankCor 0.26 0.26 0.25 0.25 0.25

Table 5: Building local models through random cluster assignment (continued).
Any local model built through random clustering performs worse than their
global model counterpart.

building local models, apparent evaluation of model fit can be misleading. For
any choice of k we found that the local model has a better fit than the global
model counterpart. However, the prediction performance of the better fitting
local model is considerably worse than that of the corresponding global model.

This result emphasizes the need for evaluation of models based on their
performance of predicting unseen data (RQ2) – an evaluation based on model
fit alone (RQ1) is not sufficient to fully evaluate model performance on the
one hand, and to compare global versus local models on the other hand.

Second, our experiment demonstrates that “smart” clustering is an integral
part to building local models. One key factor that lends local models perfor-
mance advantages over global models, is the exploitation of homogeneity in the
data. Our finding thus provides a strong support for the initial assumptions
by Menzies et al. [20].

In particular, empirical software engineering datasets contain observations
with similar properties. The advantage of building local models stems from
grouping similar observations together and learning from these groups (which
is what local models do), as opposed to learning from all data and trying to
learn a compromise between all data points (i.e., which is what a global model
does).�

�

�

Our results show that the improved performance of local modeling
over global modeling is rooted in taking advantage of the homo-
geneity in the data, and not in the reduction of the data points to
which the models are fitted. Furthermore, we find that both, good-
ness of fit metrics, and prediction performance criteria together are
paramount to fully evaluate and compare local modeling approaches.

24 Nicolas Bettenburg et al.

!"#"$%$&'()(*+),&-.+/01)023&+..2.*&45&16201+&27&8

#
9
:
&2
7&
"
4
!
2
;9
)+
&-
.+
/
01
)0
2
3
&<
..
2
.&
=;
2
>
&*
1
(
;+
!?

@

A

B

CD

CE

C E F @ G A H B I CDJ&K

Fig. 4: Sum of absolute Prediction Errors when building local models through
random clustering in the NASACOC dataset. We observe that the prediction
error increases with k. This observation holds true for all datasets.

RQ4. What is the impact of choice of clustering algorithm on the
performance of the resulting local models?

In the discussion of the previous research question, we demonstrated that
clustering the data by the inherent homogeneity is an integral part of building
local models. Machine learning literature has proposed a plethora of clustering
algorithms, each of which with a slightly different angle on how to find and
group similar observations in data.

Through these differences it is quite likely that different clustering ap-
proaches might be more or less suitable for building local models. In particu-
lar, the clustering algorithm we used for our previous experiments, MCLUST,
is a non-parametric clustering approach, i.e., MCLUST automatically deter-
mines the number of clusters to which the dataset should be divided into. This
can be a limiting factor since the choice of k happens irrespective of what the
clusters are used for, in subsequent analysis and modeling steps.

With parametric clustering algorithms, the choice of number of clusters is
given into the hands of the analyst. This has the advantage that the analyst
can control the number of clusters based on historical data of the project,
organizational knowledge and other empirical evidence. Hence, with this re-
search question we want to find out if we can get better performance of local
models when using parametric clustering approaches.

Approach
To study the impact of the choice of clustering algorithms on building local
models, we add two additional well-known parametric clustering algorithms:
Hierarchical Clustering [18] and K-Means [15] Clustering. Both clustering ap-
proaches depend on the choice of a single parameter k, which denotes the

Towards Improving Statistical modeling of Software Engineering Data 25

desired number of clusters that the input data should be divided into. How-
ever, it is left to the analyst’s expert knowledge to determine the appropriate
k for the dataset under study.

In the domain of empirical software engineering, an appropriate choice of k
requires expert knowledge. The number of homogeneous regions (clusters) in
the data depends on the size of the dataset, the length of the data collection
period (for example, the collection of the data might cover several periods with
distinct team reorganizations and changes in the software process, where each
would almost certainly shape the data being recorded) and other project and
domain specific factors that are unique to each dataset.

Since we as researchers lack such expert knowledge for the selected case
study subjects, we do not know a priori, which choice of k would be the most
appropriate. As a result, we set up our experiment such that we carry out all
analysis based on different choices of k between one and ten.

Overall we follow an experimental setup that is similar to the one presented
in research question 3. In particular, our experiment consists of the following
steps:

1. We select a number, max k, between 1 and 10. This number max k denotes
the choice of the input parameter for the clustering algorithms for a single
run of the experiment. A choice of k = 1 is equivalent to no clustering (i.e.,
building a global model).

2. We cluster the whole dataset through the use of a clustering algorithm.
For each observation i in our dataset, we record the cluster to which this
observations was assigned membership to by the clustering algorithm.

3. We randomly subdivide the data into a training dataset, which contains
90% of all observations in the data, and a testing dataset, which contains
the remaining 10% of observations that are not part of the training dataset.
For each single run of the experiment, we select a different division into
training and testing data by random.

4. We group all observations in the training dataset by the cluster j ∈ [1..max k],
to which they were assigned earlier. For each j, we learn a linear regression
model mj and record the model in a mapping from j to mj .

5. For each model mj we calculate goodness of fit metrics on the model
through measures of AIC and fit correlation, in the same way that we
presented during the discussion of RQ1 in Section 4.1.

6. For each observation in the testing dataset, we know by the record of ki, to
which cluster that observation was assigned to initially. We use this infor-
mation to predict the outcome of the observation with the corresponding
local model for that cluster mj , where j = ki. We then record the differ-

ence between the predicted outcome Ŷ and the actual outcome Y as it is
recorded in the dataset to find the absolute prediction error.

7. We calculate prediction performance criteria similar to those presented in
the discussion of RQ2 in Section 4.2. In particular, we record the absolute
prediction sum across all predictions made, the median prediction error,
and the correlation in ranking between predicted and actual values.

26 Nicolas Bettenburg et al.

The same statistical analysis for countering randomization bias that we pre-
sented in the previous research question (RQ3) applies to this experimental
setup, as well. Hence we repeat the above steps 10,000 times.

Results
The results of this experiment are summarized in Table 6. Again to increase
readability, we have marked the “best values” in each column in bold font
face, and omitted rows without best values. We provide the full results in Ta-
bles 9, 10, 11, which are part of Appendix B. Overall we make a number of
separate important observations that we discuss in detail below.

1. Different datasets benefit from different choices of clustering approaches
when building local models.

Table 6 presents a summary of the experiment with the optimum choice of
k for different evaluation criteria. We find that no single clustering approach
performs the best across all datasets. With respect to absolute sum of pre-
diction errors, parametric clustering approaches outperform non-parametric
clustering approaches three out of five times (Lucene 2.4, CHINA, Eclipse 3.0
datasets).

With respect to median prediction error, parametric clustering outperforms
non-parametric clustering two out of five times (Lucene 2.4 and Eclipse 3.0).
With respect to rank correlation between predicted and actual values, non-
parametric clustering outperforms both parametric clustering approaches in
all cases.

2. A careful choice of parameter k is paramount for building high-performance
local models when using k-means clustering. Surprisingly however, local model
performance when using hierarchical clustering is robust against any particular
choice of k.

For the two parametric clustering algorithms we present the results for each
value of k individually in Tables 6 B., and 6 C. As we can see from Table 6 B.
and 6 C. in comparison to Table 6, a poor choice of k can have a significant
detrimental effect on the model’s prediction performance. For example, in the
case of the Lucene dataset, the optimal value of k for K-means clustering is 3.
At this value of k = 3, the sum of absolute prediction error (ErrSum) is 42.83,
while at a value of k = 10 ErrSum is 131.79.

Overall, we observe that the performance of local models built through k-
means clustering, model varies greatly with respect to the choice of parameter
k. As opposed to k-means clustering, we observe that for hiearchical clustering,
the absolute prediction error varies within a very small interval: the maximum
variation is 1.9% in the case of the CHINA dataset. Similarly, the predicted
rank correlation (“PredCor”) and fit correlation (“FitCor”) do not appear to
be impacted by choice of k. However, we observe an impact by choice of k on
the median prediction error (column “MedErr”).

Towards Improving Statistical modeling of Software Engineering Data 27

Table 6: Using different clustering techniques for building local models. Best
values are marked in bold.

A. Results Summary

K AIC FitCor ErrSum MedErr PredCor

Lucene
K-Means 3 1,172.89 0.39 42.83 0.91 0.36
MCLUST na 462.43 0.60 55.15 1.15 0.67

MARS na na 0.83 43.61 0.94 0.72

Xalan
MCLUST na 352.98 0.52 57.35 0.52 0.50

MARS na na 0.69 50.90 0.40 0.56

CHINA
K-Means 8 624.07 0.85 51,568.75 276.00 0.82
MCLUST na 1,805.06 0.89 83,420.53 552.85 0.85

MARS na na 0.89 25,106.00 234.43 0.99

NASACOC
MCLUST na 158.37 0.97 41.49 2.14 0.95

MARS na na 0.99 26.95 1.63 0.97

ECLIPSE 3.0
Random 2 9,458.64 0.29 338.97 0.10 0.28

Hierarchical 9 19,205.36 0.29 332.08 0.10 0.28
K-Means 3 3,317.39 0.31 324.47 0.10 0.30

Global na 19,575.91 0.62 340.89 0.10 0.59
MARS na na 0.67 342.85 0.10 0.56

B. Hierarchical Clustering

K AIC FitCor ErrSum MedErr PredCor

Lucene 2 1,255.18 0.44 46.48 0.98 0.41
6 1,254.79 0.44 46.82 0.84 0.42
9 1,255.47 0.44 46.51 0.72 0.42

10 1,255.26 0.44 46.57 0.70 0.41

Xalan 3 2,003.66 0.40 58.86 0.47 0.38
5 2006.17 0.40 58.28 0.46 0.38
9 2,004.58 0.40 58.43 0.44 0.38

10 2,004.82 0.40 58.61 0.44 0.38

China 3 8,492.78 0.70 119,672.40 850.48 0.70
4 8,496.50 0.70 117833.30 839.56 0.69
6 8,492.83 0.70 119,665.00 791.26 0.70

10 8,495.96 0.70 118,249.60 726.14 0.70

NASACOC 3 826.07 0.76 72.04 2.74 0.73
10 824.96 0.76 74.33 1.63 0.73

Eclipse 3.0 4 19,193.89 0.29 333.38 0.10 0.29
9 19,205.36 0.29 332.08 0.10 0.28

C. K-Means Clustering

K AIC FitCor ErrSum MedErr PredCor

2 1,179.73 0.40 43.23 0.95 0.37
Lucene 3 1,172.89 0.39 42.83 0.91 0.36

5 92.99 0.41 98.14 1.04 0.26
10 113.88 0.53 131.79 1.11 0.23

Xalan 3 371.59 0.44 58.50 0.44 0.38
5 251.52 0.47 60.61 0.41 0.39
6 174.66 0.47 72.49 0.40 0.35
8 102.88 0.51 131.57 0.41 0.32

10 -501.45 0.52 156.59 0.43 0.28

China 8 625.82 0.85 51,568.75 276.00 0.82
9 673.66 0.87 52,944.17 237.54 0.84

10 529.11 0.87 60,944.49 234.40 0.82

NASACOC 2 699.19 0.82 63.84 2.57 0.71
6 88.23 0.83 179.08 1.33 0.56
7 15.46 0.78 119.61 1.31 0.56
8 40.67 0.80 83.19 1.07 0.60

Eclipse 3.0 2 8,625.81 0.31 329.54 0.10 0.29
3 3317.39 0.31 324.47 0.10 0.30
5 1,533.78 0.31 483.02 0.10 0.30

10 845.23 0.32 497.34 0.11 0.27

28 Nicolas Bettenburg et al.

In summary we find that for a particular k, the performance of local models
built through parametric clustering approaches can be much worse than the
global model counterpart, as well as just assigning data points to random
clusters. For example, in the XALAN dataset, any choice of k ≥ 4 for k-means
clustering produces a larger absolute prediction error than random clustering
(Table 6), and seven out of ten possible choices of k lead to a larger absolute
prediction error than a traditional global model (Table 6 C).

The above observation has a significant impact on building local models in
practice: we need to perform a careful selection of parameter k for the chosen
parametric clustering approach as a calibration step, which is paramount for
benefitting from local modeling. A table, such as Table 11 can serve as a first
starting point for carrying out such a calibration to the dataset at hand.

3. Depending on the objective (best fit, least prediction error, closest rank cor-
relation), different choices of k provide optimal results when using parametric
clustering approaches for building local models.

Tables 6 B. and 6 C. show that depending on the expected use of the model, a
different choice of k may be more appropriate. This is evidenced by no single
row in either Table containing all bold (best) values. For example, practitioners
might be more interested in maximizing predicted rank correlation, such as
to allocate precious testing resources in decreasing order of predicted relative
risk – the absolute number of bugs that the model predicts is not of interest
to them. For hierarchical clustering, four out of seven times (57%) selecting k
according to minimal prediction errors does not yield the optimal ordering (i.e.,
value for rank correlation between predicted and actual values). For k-means
clustering the same is true five out of seven times (71%).

In addition, Tables 6 B. and 6 C. provide additional evidence to our ear-
lier point, that judging local models by goodness of fit metrics alone is risky.
Only a single time does “best goodness of fit” align with an optimal predic-
tion performance measure when using hierarchical clustering (in the case of
the CHINA dataset, when considering predicted rank correlation). Similarly,
for k-means clustering this is true for the CHINA dataset, with respect to
median error.

Discussion
Based on our findings, we cannot recommend a single clustering technique
as the optimal technique for building local models. While we observe that
MCLUST generally performs very well, other clustering techniques with a
careful selection of parameters have the potential for building local models
that outperform any other approach we have experimented with in this paper.

However, the advantage of MCLUST being a non-parametric approach:
analysts need not perform a preliminary calibration for the parameter k when
building local models, but can use the clustering technique out of the box.
MCLUST discovers clusters based on analysis of data distributions: an overly
simplistic description would be that it creates elliptic regions through the

Towards Improving Statistical modeling of Software Engineering Data 29

multidimensional space and grows these regions until they contain normally
distributed data (with respect to each metric). However, software engineering
data is rarely normally distributed and local modeling may greatly benefit from
a non-parametric clustering approach that would work based on geometric and
power-law distributions. We leave this as an open challenge for future research.

Furthermore, since our findings support the notion of the importance of
clustering algorithm for local modeling, we encourage collaboration between
researchers in the fields of empirical software engineering, data mining and
machine learning. It would be especially viable for the community if such a
collaboration produced clustering algorithms that take into account the special
properties of software engineering datasets. One example of a particularly
impressive first step into this direction is the WHERE clustering algorithm by
Menzies et al. [19].�

�

	
Parametric clustering approaches have the potential to outperform
non-parametric clustering, but only through a careful calibration of
parameters by considering both, the dataset and the modeling goal
at hand.

RQ5. For the same datasets and predicted outcome, how do different
software engineering metrics respond to local modeling?

So far we have demonstrated that software engineering datasets can be used to
train local models that outperform global models. We have also demonstrated
that the clustering algorithm used to build local models has a major impact
on the performance of these models.

However, clustering approaches depend on the existence of observations
in the data that are similar to each other, and different from other groups
of similar observations. In particular, based on our study on local modeling,
we conjecture that local modeling is most viable when the dataset has ho-
mogeneous regions with enough variation in the dataset to discern individual
clusters of data and clear boundaries between these clusters.

Yet, different sets of software engineering metrics might fulfill these proper-
ties to different extent, and as such might respond differently to local modeling.
In the following we investigate this conjecture by studying how different sets
of metrics for the same datasets and the same predicted outcome (post release
defects) respond to local modeling.

Approach
We conduct experiments with an additional dataset that was used in the past
to predict post-release defects across all open-source projects under the Eclipse
foundation umbrella. The dataset is based on social metrics, as well as code
metrics. We have shown in past work [6] that global models based on these
social metrics a) have as much explanatory power as models based on tra-
ditional code metrics, and b) are orthogonal to traditional metrics, i.e., they

30 Nicolas Bettenburg et al.

Table 7: Comparison of different sets metrics (code metrics, social metrics)
for the same predicted outcome (defect), when using different clustering tech-
niques for building local models in comparison to global models and global
models with local considerations (denoted with MARS). Best values are
marked in bold face font (for k these correspond to lowest prediction error
sum).

ECLIPSE (Social)
K AIC FitCor ErrSum MedErr PredCor

Random 2 23,268.31 0.30 1,106.88 0.71 0.30
Hierarchical 5 50,001.05 0.30 1,078.36 0.69 0.30

K-Means 2 23,402.13 0.30 1,092.13 0.72 0.30
MCLUST na 50,013.07 0.25 1,099.32 0.66 0.34

Global na 50,055.34 0.25 1,085.18 0.69 0.37
MARS na na 0.47 1,152.82 0.57 0.45

ECLIPSE (Code)
K AIC FitCor ErrSum MedErr PredCor

Random 2 9,458.64 0.29 338.97 0.10 0.28
Hierarchical 9 19,205.36 0.29 332.08 0.10 0.28

K-Means 3 3,317.39 0.31 324.47 0.10 0.30
MCLUST na 5,701.08 0.37 389.77 0.18 0.57

Global na 19,575.91 0.62 340.89 0.10 0.59
MARS na na 0.67 342.85 0.10 0.56

capture different aspects of the project. The predicted outcome is the number
of post-release defects at a file-level granularity.

In order to investigate to what extent the nature of metrics used to build
models for the same outcome lends itself to local modeling, we follow the same
experimental setup presented in RQ4. In addition, we use the same evaluation
criteria presented in RQ1 and RQ2 in the context of our experiments with the
social metrics dataset.

Results
The results of our experiment are presented in Table 7. First, we find that
local models based on social metrics do not show a performance advantage
over the global model counterparts. If we look at the performance metrics
reported in Table 7, we see that only a single local model (Eclipse, Hierarchical)
outperforms the global model with respect to prediction error (sum and median
error) metrics, and only marginally so. We note that during the execution of
the experiment, the MCLUST clustering algorithm reported that it failed to
recognize clusters in the Eclipse datasets when using social metrics. Similarly,
we see that best performance with k-means clustering is achieved for a choice
of k = 2.

Furthermore, we observe from Table 8 that the choice of k has a very small
impact on the goodness of fit and prediction performance, when using social
metrics as the underlying datasets. We carried out a calibration experiment
with parametric clustering approaches for local modeling of the social metrics
datasets, and found that the reported performance metrics show very little
variation with respect to the choice of k, regardless of the used approach (hi-
erarchical, k-means).

Towards Improving Statistical modeling of Software Engineering Data 31

Table 8: Performance of local models built through different clustering ap-
proaches, by different values of parameter k (number of clusters). Best values
marked in bold.

Eclipse 3.0 - Social Metrics - Hierarchical Clustering

K AIC FitCor ErrSum MedErr PredCor

2 49995.01 0.30 1082.34 0.70 0.30
3 49987.16 0.30 1091.66 0.69 0.30
4 49992.45 0.30 1081.51 0.69 0.30
5 50001.05 0.30 1078.36 0.69 0.30
6 49991.83 0.30 1085.68 0.69 0.30
7 49993.21 0.30 1081.43 0.69 0.30
8 49986.83 0.30 1089.52 0.69 0.30
9 49996.04 0.30 1079.93 0.69 0.30

10 49990.93 0.30 1084.20 0.68 0.30

Eclipse 3.0 - Social Metrics - K-Means Clustering

K AIC FitCor ErrSum MedErr PredCor

2 23402.13 0.30 1092.13 0.72 0.30
3 3750.82 0.29 1119.81 0.73 0.29
4 2059.00 0.29 1116.28 0.73 0.29
5 1255.01 0.29 1124.47 0.75 0.29
6 2580.13 0.32 1108.37 0.66 0.31
7 2685.18 0.32 1138.17 0.64 0.31
8 1696.99 0.32 1137.42 0.64 0.31
9 968.83 0.32 1156.76 0.65 0.31

10 1555.38 0.32 1155.50 0.64 0.31

32 Nicolas Bettenburg et al.

Code Metrics Social Metrics

!
"

0
"

1
0

Eclipse Dataset

V
a
ri

a
n
c
e
 i
n
 t

h
e
 d

a
ta

 (
a
c
ro

s
s
 a

ll
c
o
lle

c
te

d
 m

e
tr

ic
s
,

lo
g
 s

c
a
le

)

Fig. 5: The variance across all metrics collected in the Eclipse dataset is statis-
tically significantly (Mann-Whitney U test at p ≤ 0.01 level) for social metrics
compared to code metrics, on a logarithmic scale. Our results suggest that
such variance is important for clustering the dataset into local regions, which
in turn are essential for building local models.

Discussion
Figure 5 might give a possible explanation as to why we fail to build local
models when we are using social metrics, but succeed when using code metrics
for the same data and predicted outcome. The figure summarizes the vari-
ance in the data across all metrics of one type (social or code complexity).
In particular, we observe that social metrics contain statistically significantly
(Mann-Whitney U at p ≤ 0.01) less variance in each metric (column) col-
lected for observations (rows) in the data. However, clustering algorithms need
that variance to group similar observations into clusters and determine cluster
boundaries [1].

Our observations in RQ5 show that if the data already has low variance
to begin with, no clustering approach will find meaningful subdivisions of the
data. When there are no meaningful subdivisions, local modeling converges to
the trivial case and is no different from global modeling. However, the idea of
local learning originally proposed by Menzies et al. [19] was exactly motivated
by the observation that software engineering data contains high variance and
that such high variance has a detrimental impact on modeling.

Towards Improving Statistical modeling of Software Engineering Data 33

We want to note that a recent study by Rahman and Devanbu [32] found
that the code metrics have higher stasis compared to process metrics. In their
work they measure stasis as the change in the metric values from one version
to another. Thus they find that code metrics remain the same across versions
whereas process metrics changes from one version to next. However, in our
work, when we refer to variance in the social metrics, we calculate variance of
the metrics within the data from a single version.

Our experiments in connection with social data suggests, that social data
is much more homogeneous out of the box, and thus analysts do not need to
go the extra mile of carrying out local modeling.�

�

�

�

Overall, our results suggest that even for the same case study sys-
tem, clustering algorithm, evaluation criteria, and outcome, differ-
ent kinds of metrics are more suitable for building local models than
others. Thus we recommend that researchers and practitioners not
blindly build local models and assume that these models will lead to
significant performance benefits over global models. The underlying
data must support the local modeling process in that it needs to con-
tain enough variability in the collected measurements to allow for
good clustering into local regions, which then in turn can be used to
learn high-quality localized models.

RQ6. What are the considerations in the use of local models over
global models for practitioners?

One of the main applications of models when used by practitioners is obtaining
an understanding of the software project, to better guide future actions. For
example, a manager might not be interested in the absolute predicted value
of bugs per file, but rather would like to know what actions he or she should
take in order to increase software quality. One possible way to obtain such
insights when using regression models, is the use of response plots [14]. These
plots describe, how the dependent variable (i.e., bugs or effort) reacts when
we change the value of a single independent variable (while at the same time
keeping all other variables at their median values).

As an example, we show the response plots for four independent variables
found in the global model that was learned on the Xalan 2.6 dataset in Fig-
ure 6a. For example, the response plot for variable ce, which measures the
efferent couplings (how many other classes are used by the specific class for
which the model predicts bugs), shows us that as the coupling increases, so
does the bug-proneness.

However, response plots obtained from global models show only general
trends, as global models are fitted across the complete dataset. Throughout our
case study, we have observed that when building local models, the individual
models that are learned from each of the clusters differs, in the variables that

34 Nicolas Bettenburg et al.

1 2 3 4 5 6 7 8

0
.2

0
.4

0
.6

0
.8

5 dit

0 1 2 3 4 5

0
.9

1
.1

1
.3

1
.5

6 ic

0 1000 3000 5000

1
.0

1
.5

2
.0

2
.5

3
.0

7 lcom

0.0 0.5 1.0 1.5 2.0

0
.5
5

0
.6
5

0
.7
5

0
.8
5

8 lcom3

(a) Visualization of four independent variables of a global model
learned on the Xalan 2.6 dataset

0 10 20 30 40 50

0
.5
0

0
.5
4

0
.5
8

0
.6
2

5 ce

0.0 0.2 0.4 0.6 0.8 1.0

0
.3
5

0
.4
5

6 dam

1 2 3 4 5 6 7 8

0
.3

0
.4

0
.5

0
.6

7 dit

0 1 2 3 4 5

0
.5
0

0
.5
5

0
.6
0

0
.6
5

8 ic

(b) Visualization of four independent variables of a global model
with local considerations learned on the same Xalan 2.6 dataset

Fig. 6: Global models report general trends, while global models with local considerations

give insights into different regions of the data. The Y-Axis describes the response (in this

case bugs) while keeping all other independent variables at their median values.

were deemed significant for that portion of the data, as well as the overall
trends.

Towards Improving Statistical modeling of Software Engineering Data 35

! " # $ % &!

!
"
#$

"
#"

"
#$

"#" "#% "#$ "#& "#' (#"

!
(
#)

!
"
#)

"#" (#" %#" *#"

!
"
#(

"
#(

"
#*

! &! "! '! #!)" $!

!
"
#)

"
#"

"
#)

(
#"

"#" "#% "#$ "#& "#' (#"
!

&
"

'
! & " ' #

!
%
#"

!
(
#"

"
#"

!"

#$%

#$%

!" %&'

%&'

()"'*+,)-.*/+0*123.4+5

()"'*+,)-.*/+0*123.4+6

Fig. 7: Example of contradicting trends in local models (one run of local modeling of the

Xalan 2.6 dataset, Cluster 1 and Cluster 6.

For example, Figure 7 shows three response plots for local models learned
from Cluster 1 and Cluster 6 in one of our experiments on the Xalan 2.6
dataset. The example illustrated in this figure shows the relationship between
three predictor variables and the predicted outcome (defects), according to two
local regions of the data, and these relationships are completely opposite).
Notably, the observed effects of all three independent variables on bugs are
contradictory. For Cluster 1, an increase in ic (measuring the inheritance
coupling through parent classes), mfa (the degree of functional abstraction),
and npm (number of public methods in a class) is predicted to lead to an
increase in bug-proneness. At the same time, for Cluster 6, the increase in
the same variables is expected to go in hand with a decrease in bug-proneness.
Thus analysts need to interpret each local region individually for each predictor
variable. As the number of predictor variables, and the number of local regions
in the data increases, this task becomes increasingly complex. For example, in
the case of Xalan the analyst is presented with 19 x 8 = 152 different trend
lines.

While local models are more precise, the trends are a) specific to particular
regions of the data, so a practitioner will first have to determine the appro-
priate cluster for the problem at hand, and b) for each cluster there might be
many recommendations to choose from (one recommendation for each met-
ric in each cluster). As an alternative, we propose the use of response plots
obtained from global models with local considerations, such as MARS. An

36 Nicolas Bettenburg et al.

example of a response plot for four independent variables in the MARS model
learned on the same Xalan 2.6 dataset is shown in Figure 6b.

By design, the hinge functions of the MARS model already divide the data
into regions with individual properties. For example, we observe that an in-
crease of ic (measuring the inheritance coupling through parent classes) is
predicted to only have a negative effect on bug-proneness when it attains val-
ues larger than 1. Thus a practitioner might decide a different course of action
than he or she would have done based on the trends outlined by a global model.

�

�

�

�

Local modeling offers more precise interpretations over global mod-
els. However, local modeling results in a multitude of model inter-
pretations (one for each data cluster) that can be contradictory.
We recommend global models with local considerations as a hybrid
approach that strikes a balance between being able to interpret data
regions and simplicity, combining the best of local and global mod-
eling worlds.

5 Conclusions

In this study, we investigated the difference between three different approaches
for building models for empirical software engineering datasets. Global models
are built on software engineering datasets as-is, while for local models we first
subdivide the datasets into subsets of data with similar observations, before
building individual models on each subset. In addition, we also studied a third
approach: multivariate adaptive regression splines (MARS) as a global model
with local considerations. MARS by design takes local considerations of indi-
vidual regions of the data into account, and can thus be considered a hybrid
between global and local models.

A. Think Locally
We evaluated each of the three modeling approaches in a case study on five dif-
ferent datasets, four of which have been used in prior research on the WHICH
machine-learning algorithm [20]. The results of our case study demonstrate
that clustering of a dataset into regions with similar properties and using the
individual regions for building of models leads to an improved fit of these
models. Our findings thus confirm the results of Menzies et al., who observed
a similar effect of data localization on their WHICH machine-learning algo-
rithm [20]. These increased fits have practical implications for researchers con-
cerned in using regression models for understanding: local models are more in-
sightful than global models, which report only general trends across the whole
dataset, whereas we have demonstrated that such general trends may not hold
true for particular parts of the dataset. However, we demonstrated that good-
ness of fit criteria alone are not sufficient to evaluate local models and to

Towards Improving Statistical modeling of Software Engineering Data 37

compare them to global models. Yet, considering evaluation criteria that mea-
sure predictive performance of models, we observed that local models trained
on clustered data and global models with local considerations considerably
and consistently outperform their global model counterparts.

Our findings reinforce the recommendations of Menzies et al. [20] against
the use of a “one-size-fits-all” approach, such as a global model, when trying
to account for such localized effects. However, as we have demonstrated, local
modeling depends on:

1. the variability in the data to obtain meaningful clusters.
2. the clustering algorithm that is used to divide the data into local regions.
3. careful calibration of parameters for the used clustering approaches.

Based on our findings, we recommend strongly against blindly building lo-
cal models in the hope that they will outperform global models. Our findings
show that without careful a priori calibration and evaluation, analysts might
end up building local models whose performance is considerably worse than
their global counterparts. As such, we strongly support the notion of Menzies
et al. for a dedicated “local modeling team” [19] with the expertise and knowl-
edge to benefit from this modeling approach. On the other hand, our study
also demonstrates that out-of-the box approaches that do not require analysts
to provide parameters (i.e., clustering using MCLUST, learning global models
with local considerations), provide performance benefits over global models
for four out of five of our case study subject datasets. These approaches may
be more suitable when no dedicated “local modeling team” is available, or
resources for a-priori calibration and evaluation are limited.

B. Act Globally
Building local models involves a significant overhead due to clustering of the
data. Even though clustering algorithms such as the one presented in the work
by Menzies et al. [20] might run in linear time, researchers and practitioners
still have to work with a multitude of models, one for each cluster. Paired
with the need for preliminary analysis and calibration when using a parametric
clustering approach, analysts may want to skip building local models based
on data clustering and turn to global models with local considerations, which
require less effort and are much less resource intensive.

For practical applications of guiding future decisions, we observed that
global models produce general trends, which might not hold true for particular
regions of the data. However, as an alternative, local models produce too much
insight, that practitioners may find hard to put into practice, especially with
respect to conflicting observations across different clusters. Global models that
take local considerations into account, such as the MARS model, combine the
best of both worlds.

Based on the findings of our study, we believe that the community would
greatly benefit from insights gained in the following future research direc-
tions. For researchers, we want to emphasize that clustering is paramount
for building high-performance local models, yet software engineering datasets

38 Nicolas Bettenburg et al.

have unique properties (e.g., many metrics are not normally distributed) and
current clustering approaches are not SE friendly. For practitioners, we want
to note that blindly building local models might not lead to the desired per-
formance advantages over global models. In fact, our results demonstrate that
without careful calibration of parameters, the resulting local models can be
considerably worse than their global model counterparts. Thus, we need to
find approaches for building local models, which are accessible to practitioners
without data modeling backgrounds. For now, we recommend using MCLUST
as a non-parametric clustering approach (even though it is not specifically
designed for SE data) for local modeling, or using global models with local
considerations. Both modeling approaches show comparable performance to
global models in the worst case, and significant performance advantages in the
majority of datasets that we studied.

Repeatability

To enable repeatability of our work, and invite future research, we provide all
datasets, tools, and the complete set of R code that have been used to conduct
this study at:
http://sailhome.cs.queensu.ca/replication/local-vs-global-emse/.

References

1. Ackerman, M., Ben-david, S.: Clusterability: A theoretical study. In: Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS’09),
JMLR Workshop and Conference Proceedings Volume 5, pp. 1–8 (2009)

2. Akaike, H.: A new look at the statistical model identification. Automatic Control IEEE
Transactions on 19(6), 716–723 (1974)

3. Andreou, A., Papatheocharous, E.: Software cost estimation using fuzzy decision trees.
In: Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International
Conference on, pp. 371 –374 (2008)

4. Attoh-okine, N., Mensah, S., Nawaiseh, M., Hall, D.: Using multivariate adaptive re-
gression splines (mars) in pavement roughness prediction. Strategy (2001)

5. Barkmann, H., Lincke, R., Lowe, W.: Quantitative evaluation of software quality met-
rics in open-source projects. In: Proceedings of the 2009 International Conference on
Advanced Information Networking and Applications Workshops, WAINA ’09, pp. 1067–
1072. IEEE Computer Society, Washington, DC, USA (2009)

6. Bettenburg, N., Hassan, A.E.: Studying the impact of social structures on software
quality. In: Proceedings of the 2010 IEEE 18th International Conference on Program
Comprehension, ICPC ’10, pp. 124–133. IEEE Computer Society, Washington, DC,
USA (2010)

7. Bettenburg, N., Nagappan, M., Hassan, A.: Think locally, act globally: Improving defect
and effort prediction models. In: Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pp. 60–69 (2012)

8. Di Penta, M.: Nothing else matters: what predictive model should i use? In: Proceed-
ings of the 7th International Conference on Predictive Models in Software Engineering,
Promise ’11, pp. 10:1–10:3. ACM, New York, NY, USA (2011)

9. Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector
machines. J. Syst. Softw. 81, 649–660 (2008)

10. Fox, J.: Applied Regression analysis and generalized linear models, 2 edn. Sage, Los
Angeles, London (2008)

http://sailhome.cs.queensu.ca/replication/local-vs-global-emse/

Towards Improving Statistical modeling of Software Engineering Data 39

11. Fraley, C.: Bayesian regularization for normal mixture estimation and model-based clus-
tering. Journal of Classification 181(2), 155–181 (2007)

12. Fraley, C., Raftery, A.E.: Mclust version 3 for r : Normal mixture modeling. Office
Technical(504), 1–54 (2009)

13. Friedman, J.H.: Multivariate Adaptive Regression Splines. The Annals of Statistics
19(1), 1–67 (1991)

14. Harrell, F.E.: Regression modeling strategies : with applications to linear models, logistic
regression, and survival analysis. Springer (2001)

15. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. JSTOR: Applied Statistics
28(1), 100–108 (1979)

16. Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.i., Adams, B., Hassan, A.E.:
Revisiting common bug prediction findings using effort-aware models. In: Proceedings
of the 2010 IEEE International Conference on Software Maintenance, ICSM ’10, pp.
1–10. IEEE Computer Society (2010)

17. Li, M., Zhang, H., Wu, R., Zhou, Z.H.: Sample-based software defect prediction
with active and semi-supervised learning. Automated Software Engg. 19(2), 201–
230 (2012). DOI 10.1007/s10515-011-0092-1. URL http://dx.doi.org/10.1007/

s10515-011-0092-1

18. McQuitty, L.: Similarity analysis by reciprocal pairs for discrete and continuous data.
Educational and Psychological Measurement pp. 825–831 (1966)

19. Menzies, T., Butcher, A., Cok, D., Layman, L., Marcus, A., Shull, F., Turhan, B.,
Zimmermann, T.: Local vs. global lessons from defect prediction and effort estimation.
IEEE Transactions on Software Engineering, to appear (2013)

20. Menzies, T., Butcher, A., Marcus, A., Zimmermann, T., Cok, D.: Local vs global models
for effort estimation and defect prediction. In: Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering (2011)

21. Menzies, T., Caglayan, B., Kocaguneli, E., Krall, J., Peters, F., Turhan, B.: The promise
repository of empirical software engineering data (2012). URL http://promisedata.

googlecode.com

22. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. Software Engineering, IEEE Transactions on 33(1), 2–13 (2007)

23. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Technical
Journal 5, 169–180 (2000)

24. Mockus, A., Weiss, D.M., Zhang, P.: Understanding and predicting effort in software
projects. In: Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, pp. 274–284. IEEE Computer Society, Washington, DC, USA (2003)

25. Mockus, A., Zhang, P., Li, P.L.: Predictors of customer perceived software quality. In:
Proceedings of the 27th international conference on Software engineering, ICSE ’05, pp.
225–233. ACM, New York, NY, USA (2005)

26. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect
density. In: Proceedings of the 27th international conference on Software engineering,
ICSE ’05, pp. 284–292. ACM (2005)

27. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In:
Proceedings of the 28th international conference on Software engineering, ICSE ’06, pp.
452–461. ACM, New York, NY, USA (2006)

28. Nguyen, T.H.D., Adams, B., Hassan, A.E.: Studying the impact of dependency network
measures on software quality. In: Proceedings of the 2010 IEEE International Conference
on Software Maintenance, pp. 1–10. IEEE Computer Society (2010)

29. Osei-Bryson, K.M., Ko, M.: Exploring the relationship between information technology
investments and firm performance using regression splines analysis. Information and
Management 42(1), 1 – 13 (2004)

30. Posnett, D., Filkov, V., Devanbu, P.: Ecological inference in empirical software engi-
neering. International Conference on Automated Software Engineering, pp. 362–371
(2011)

31. Raftery, A.E., Raftery, A.E.: Bayesian model selection in social research adrian e. raftery
sociological methodology, vol. 25. (1995), pp. 111-163. Social Research 25(1995), 111–
163 (2007)

http://dx.doi.org/10.1007/s10515-011-0092-1
http://dx.doi.org/10.1007/s10515-011-0092-1
http://promisedata.googlecode.com
http://promisedata.googlecode.com

40 Nicolas Bettenburg et al.

32. Rahman F., Devanbu, P.: How, and why, process metrics are better. In: Proceedings
of the 2013 International Conference on Software Engineering, ICSE ’13, pp. 432–441.
IEEE Computer Society, Washington, DC, USA (2013)

33. Rice, J.A.: Mathematical Statistics and Data Analysis. Duxbury Press (2001)
34. Schwarz, G.: Estimating the dimension of a model. Ann. Statist. 6(2), 461–464 (1978)
35. Shepperd, M.: A critique of cyclomatic complexity as a software metric. Software En-

gineering Journal 3(2), 30 –36 (1988)
36. Shihab, E., Bird, C., Zimmermann, T., Zimmermann, T.: The effect of branching strate-

gies on software quality. In: ESEM, pp. 301–310 (2012)
37. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,

Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2005)

38. York, T.P., Eaves, L.J.: Common disease analysis using multivariate adaptive regres-
sion splines (mars): Genetic analysis workshop 12 simulated sequence data. Genetic
Epidemiology 21 Suppl 1, S649–S654 (2001)

39. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process. In: Proceedings
of the the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, ESEC/FSE
’09, pp. 91–100. ACM, New York, NY, USA (2009)

40. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings
of the Third International Workshop on Predictor Models in Software Engineering,
PROMISE ’07, pp. 9–. IEEE Computer Society, Washington, DC, USA (2007)

Appendix A

Further descriptions of the individual metrics used in these datasets can be
found in the work by Menzies et al. [20] and our previous work on social
metrics [6].

Metrics in the Lucene 2.4 Dataset

Dependent Variables: bug
Independent Variables: amc, avg cc, ca, cam, cbm, ce, dam, dit, ic, lcom,

lcom3, max cc, mfa, moa, noc, npm

Metrics in the Xalan 2.6 Dataset

Dependent Variables: bug
Independent Variables: avg cc, ca, cam, cbm, ce, dam, dit, ic, lcom,

lcom3, loc, max cc, mfa, moa, noc, npm

Metrics in the CHINA Dataset

Dependent Variables: Effort
Independent Variables: Input, Output, Enquiry, File, Interface, Changed,

PDR UFP, Resource, Duration

Towards Improving Statistical modeling of Software Engineering Data 41

Metrics in the NASACOC Dataset

Dependent Variables: months
Independent Variables: pmat, rely, data, cplx, time, stor, pvol, pcap,

apex, plex, ltex, site, sced, kloc, effort

Metrics in the Eclipse 3.0 (Code) Dataset

Dependent Variables: post
Independent Variables: pre, ImportDeclaration, VG sum, PrefixExpression,

NOM avg, NOF avg, TLOC, NullLiteral, NOM max, BooleanLiteral, SwitchCase,

SimpleName, SuperMethodInvocation, LabeledStatement, Block, NORM Assignment,

Initializer, NSM avg, InfixExpression, Assignment, NumberLiteral,

VariableDeclarationFragment, Javadoc, NORM FieldDeclaration, ForStatement,

Modifier, NORM ArrayCreation, MethodInvocation, VariableDeclarationExpression,

ArrayCreation, ExpressionStatement, NORM PostfixExpression, InstanceofExpression,

SwitchStatement, ArrayType, SynchronizedStatement

Metrics in the Eclipse 3.0 (Social) Dataset

Dependent Variables: poat
Independent Variables: NSCOM, PATCHS, NSOURCE, NPATCH, NTRACE, TRACES,

NLINK, NPART, NDEVS, NUSERS, SNACENT, NMSG, REPLY, REPLYE, DLEN, DLENE,

INT, INTE, WA, WAE

42 Nicolas Bettenburg et al.

Appendix B

Table 9: Results: Using different clustering techniques for building local mod-
els in comparison to global models and global models with local considera-
tions (denoted with MARS). Best values are marked in bold face font and
the value of k corresponds to lowest prediction error sum. Parametric clus-
tering approaches have the potential to outperform non-parametric clustering
approaches with a careful selection of parameter k.

Lucene
K AIC FitCor ErrSum MedErr PredCor

Random 2 622.90 0.45 49.59 1.07 0.38
Hierarchical 2 1,255.18 0.44 46.48 0.98 0.41

K-Means 3 1,172.89 0.39 42.83 0.91 0.36
MCLUST na 462.43 0.60 55.15 1.15 0.67

Global na 1,380.35 0.32 49.72 1.15 0.71
MARS na na 0.83 43.61 0.94 0.72

Xalan
K AIC FitCor ErrSum MedErr PredCor

Random 2 1,004.61 0.41 59.41 0.48 0.36
Hierarchical 5 2,006.17 0.40 58.28 0.46 0.38

K-Means 3 371.59 0.44 58.50 0.44 0.38
MCLUST na 352.98 0.52 57.35 0.52 0.50

Global na 2,190.30 0.33 61.07 0.64 0.36
MARS na na 0.69 50.90 0.40 0.56

CHINA
K AIC FitCor ErrSum MedErr PredCor

Random 2 4,221.43 0.67 130,887.50 1015.36 0.67
Hierarchical 4 8,494.27 0.70 117,833.30 839.56 0.69

K-Means 8 624.07 0.85 51,568.75 276.00 0.82
MCLUST na 1,805.06 0.89 83,420.53 552.85 0.85

Global na 8,696.17 0.83 91,592.52 765.00 0.82
MARS na na 0.89 25,106.00 234.43 0.99

NASACOC
K AIC FitCor ErrSum MedErr PredCor

Random 2 398.77 0.78 77.58 3.16 0.70
Hierarchical 3 826.07 0.76 72.04 2.74 0.73

K-Means 2 699.19 0.82 63.84 2.57 0.71
MCLUST na 158.37 0.97 41.49 2.14 0.95

Global na 585.95 0.93 48.75 3.26 0.95
MARS na na 0.99 26.95 1.63 0.97

ECLIPSE 3.0
K AIC FitCor ErrSum MedErr PredCor

Random 2 9,458.64 0.29 338.97 0.10 0.28
Hierarchical 9 19,205.36 0.29 332.08 0.10 0.28

K-Means 3 3,317.39 0.31 324.47 0.10 0.30
MCLUST na 5,701.08 0.37 389.77 0.18 0.57

Global na 19,575.91 0.62 340.89 0.10 0.59
MARS na na 0.67 342.85 0.10 0.56

Towards Improving Statistical modeling of Software Engineering Data 43

Table 10: Performance of local models built through hierarchical clustering,
with different values for parameter k (number of clusters). All performance
metrics, except for median prediction error, show very small differences de-
pending on the choice of parameter k.

K AIC FitCor ErrSum MedErr PredCor

Lucene
2 1,255.18 0.44 46.48 0.98 0.41
3 1,254.89 0.44 47.02 0.96 0.41
4 1,254.55 0.44 46.80 0.92 0.41
5 1,255.03 0.44 46.93 0.89 0.41
6 1,254.79 0.44 46.82 0.84 0.42
7 1,254.37 0.44 47.20 0.81 0.41
8 1,255.39 0.44 46.74 0.77 0.41
9 1,255.47 0.44 46.51 0.72 0.42

10 1,255.26 0.44 46.57 0.70 0.41

Xalan
2 2,004.15 0.40 58.67 0.48 0.38
3 2,003.66 0.40 58.86 0.47 0.38
4 2,004.45 0.40 58.70 0.47 0.38
5 2006.17 0.40 58.28 0.46 0.38
6 2,004.75 0.40 58.42 0.46 0.39
7 2,004.87 0.40 58.45 0.45 0.38
8 2,003.81 0.40 58.78 0.45 0.38
9 2,004.58 0.40 58.43 0.44 0.38

10 2,004.82 0.40 58.61 0.44 0.38

CHINA
2 8,495.32 0.70 118,638.90 866.65 0.69
3 8,492.78 0.70 119,672.40 850.48 0.70
4 8,496.50 0.70 117833.30 839.56 0.69
5 8,495.28 0.70 118,378.90 818.78 0.69
6 8,492.83 0.70 119,665.00 791.26 0.70
7 8,493.73 0.70 119,275.80 780.55 0.69
8 8,495.23 0.70 118,577.40 771.16 0.69
9 8,493.63 0.70 120,123.30 748.75 0.69

10 8,495.96 0.70 118,249.60 726.14 0.70

NASACOC
2 825.42 0.76 73.38 2.90 0.73
3 826.07 0.76 72.04 2.74 0.73
4 825.95 0.76 72.22 2.53 0.72
5 825.79 0.76 72.75 2.44 0.73
6 825.40 0.76 73.68 2.28 0.73
7 825.44 0.76 73.65 2.12 0.73
8 825.98 0.76 72.18 1.92 0.73
9 825.21 0.76 73.62 1.76 0.73

10 824.96 0.76 74.33 1.63 0.73

Eclipse 3.0
2 19,202.72 0.29 332.63 0.10 0.29
3 19,210.63 0.29 332.36 0.10 0.28
4 19,193.89 0.29 333.38 0.10 0.29
5 19,197.26 0.29 333.60 0.10 0.28
6 19,201.34 0.29 332.51 0.10 0.29
7 19,196.12 0.29 333.68 0.10 0.29
8 19,202.15 0.29 333.19 0.10 0.28
9 19,205.36 0.29 332.08 0.10 0.28
10 19,203.52 0.29 333.26 0.10 0.28

44 Nicolas Bettenburg et al.

Table 11: Performance of local models built through k-means clustering, with
different values for parameter k (number of clusters). Depending on the mod-
eling objective, different choices of parameter k are optimal.

K AIC FitCor ErrSum MedErr PredCor

Lucene
2 1,179.73 0.40 43.23 0.95 0.37
3 1,172.89 0.39 42.83 0.91 0.36
4 558.96 0.40 78.30 0.95 0.29
5 92.99 0.41 98.14 1.04 0.26
6 105.15 0.42 89.65 1.07 0.25
7 104.68 0.42 86.35 1.04 0.25
8 135.24 0.45 110.64 1.12 0.22
9 97.77 0.48 155.96 1.14 0.19

10 113.88 0.53 131.79 1.11 0.23

Xalan
2 941.64 0.41 59.03 0.45 0.37
3 371.59 0.44 58.50 0.44 0.38
4 215.21 0.44 109.45 0.43 0.34
5 251.52 0.47 60.61 0.41 0.39
6 174.66 0.47 72.49 0.40 0.35
7 123.58 0.51 83.14 0.41 0.36
8 102.88 0.51 131.57 0.41 0.32
9 -225.25 0.51 122.80 0.42 0.31

10 -501.45 0.52 156.59 0.43 0.28

China
2 3,964.04 0.75 101,731.46 648.05 0.74
3 934.37 0.78 79,068.97 629.40 0.76
4 872.69 0.80 66,220.52 524.68 0.78
5 651.79 0.82 58,563.48 396.06 0.80
6 652.09 0.80 63,553.69 380.82 0.78
7 658.80 0.82 60,341.00 334.70 0.79
8 625.82 0.85 51,568.75 276.00 0.82
9 673.66 0.87 52,944.17 237.54 0.84

10 529.11 0.87 60,944.49 234.40 0.82

NASACOC
2 699.19 0.82 63.84 2.57 0.71
3 313.11 0.76 112.58 2.05 0.62
4 117.77 0.79 119.74 1.77 0.64
5 157.38 0.81 133.98 1.57 0.59
6 88.23 0.83 179.08 1.33 0.56
7 15.46 0.78 119.61 1.31 0.56
8 40.67 0.80 83.19 1.07 0.60
9 -2.30 0.82 129.73 1.21 0.49

10 23.41 0.73 181.06 1.29 0.28

Eclipse 3.0
2 8,625.81 0.31 329.54 0.10 0.29
3 3317.39 0.31 324.47 0.10 0.30
4 2,833.96 0.31 359.12 0.11 0.29
5 1,533.78 0.31 483.02 0.10 0.30
6 1,730.24 0.31 470.03 0.12 0.30
7 1,178.33 0.31 377.62 0.11 0.30
8 1,284.91 0.32 364.45 0.11 0.29
9 1,037.70 0.32 428.98 0.11 0.28

10 845.23 0.32 497.34 0.11 0.27

	Introduction
	Background and Related Work
	Case Study Design
	Results
	Conclusions

