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Abstract—Much research energy in software engineering is
focused on the creation of effort and defect prediction models.
Such models are important means for practitioners to judge
their current project situation, optimize the allocation of their
resources, and make informed future decisions. However, soft-
ware engineering data contains a large amount of variability.
Recent research demonstrates that such variability leads to
poor fits of machine learning models to the underlying data,
and suggests splitting datasets into more fine-grained subsets
with similar properties. In this paper, we present a comparison
of three different approaches for creating statistical regression
models to model and predict software defects and development
effort. Global models are trained on the whole dataset. In
contrast, local models are trained on subsets of the dataset.
Last, we build a global model that takes into account local
characteristics of the data. We evaluate the performance of
these three approaches in a case study on two defect and
two effort datasets. We find that for both types of data, local
models show a significantly increased fit to the data compared
to global models. The substantial improvements in both relative
and absolute prediction errors demonstrate that this increased
goodness of fit is valuable in practice. Finally, our experiments
suggest that trends obtained from global models are too general
for practical recommendations. At the same time, local models
provide a multitude of trends which are only valid for specific
subsets of the data. Instead, we advocate the use of trends
obtained from global models that take into account local
characteristics, as they combine the best of both worlds.
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I. INTRODUCTION

Data modelling is an important technique that is frequently
employed in empirical software engineering research, for
studying observations from software projects. Common
modelling approaches use a variety of tools from machine
learning methods, such as decision trees or support vector
machines, to statistical descriptions in the form of regres-
sion models [2], [6], [7], [15]. In the past, the foremost
application of modelling was to create prediction models.
These models describe how a set of software and process
measures can be used to predict another measure (such as
the amount of defects in a module, or the development effort
needed for a software component) in a quantitative manner.
For example, empirical methods have demonstrated that the
amount of source code changes carried out on a file give a
reliable indication of the potential future defects one is likely
to observe in that file [18]. In recent research, modelling

has also gained use as a means for understanding. Instead of
using prediction models solely as a blackbox, which is fed a
set of measures and outputs a prediction, closer inspection of
a prediction model can provide insights into the underlying
processes [5], [6], [15], [16].

Regardless of the final goal (modelling or prediction),
models are derived from data about the artifact under study.
This data is commonly extracted by mining software repos-
itories. Past research has shown that most of such software
engineering data contains a great amount of variability [14].
Since day one, we have been using software engineering
datasets for model building as is, without further considering
such variability.

A recent study by Menzies et al. demonstrates, that there
lies potential benefit in partitioning software engineering
datasets into smaller subsets of data with similar proper-
ties [14]. The study showed that building models using such
subsets (i.e. local) models lead to better fits when using
specialized machine learning algorithms. However, it is not
known:

1) Whether this finding holds for statistical techniques
such as linear regression.

2) Whether such models would lead to better predictions
since better fits might be due to overfitting of the data.
Such overfit might in turn lead to lower prediction
performance.

3) Whether others (practitioners and researchers) can
replicate such findings using off-the-shelf techniques
implemented in today’s data analysis tools such as R.

4) And finally, whether one can create models that bridge
the benefits of both, local and global worlds.

Therefore, we set out to investigate the following research
questions:

RQ1 Is there an advantage of using local models over
global models, with respect to goodness of fit? An in-
creased fit will be beneficial for empirical researchers
and practitioners, when they are using regression mod-
els for understanding. A more granular model that
better describes the data at hand might lead to more
insights into the relationships between the metrics in
the dataset and the predicted variable. We find that
a local approach produces significantly better fits



of statistical prediction models to the underlying
data.

RQ2 Is there an advantage of using local models over
global models, with respect to prediction perfor-
mance? Better performing prediction models are of
great value to practitioners since they allow to take
better informed decisions and actions. We find that
the better fits do not overfit the prediction mod-
els. The local approach significantly increases the
predictive power of statistical models, up to three
times lower prediction error.

RQ3 What are considerations in the use of local models
over global models for practitioners? An increase in
choices may not necessarily be beneficial to practition-
ers. In particular, conflicting recommendations could
be potentially misleading and prevent models from
carrying out the task that they are designed for: to
aid practitioners in decision making. We find that
while local models can distinguish the significant
variables for each local region of the data, the
recommendations between different regions can be
conflicting.

Our findings impact both practitioners and researchers alike.
Researchers in empirical software engineering might want
to further investigate modelling of local regions to use
regression models for understanding the differences of local
regions in the data. Furthermore, we see potential of local
modelling for building improved prediction models.

The rest of this paper is organized as follows: Section
II discusses the background of our study, including related
work within empirical software engineering. Section III,
illustrates the design of our case study, including data
collection and preprocessing, as well as a discussion of how
we derived the global and local prediction models used in
the case study. Section IV, discusses the findings of our case
study, and Section V, outlines our conclusions, as well as
recommendations for future research efforts.

II. BACKGROUND AND RELATED WORK

Modelling Goals. Models are used in the area of empirical
software engineering research mainly for two purposes:
prediction and understanding. For instance, Nagappan et
al. computed source code complexity metrics for individual
modules of 5 commercial software projects and used com-
binations of these complexity metrics to predict the failure
probability for future new modules [19]. They were able to
find a suitable prediction model for each of the projects,
but could not find a common set of metrics that worked
across all models. Similarly, Mockus et al. studied the use
of linear regression models to predict the risk of source code
changes [15].

At the same time, models can be used to gain an un-
derstanding of why certain effects happen. For instance,
Mockus et al. use regression models to understand the

relationships between observations on the software process
and how customers perceive the quality of the product [17].
A similar approach was used in a study by Mockus et
al. to investigate how changes impact the overall software
development effort [16].

Modelling Techniques. The majority of modelling tech-
niques used in empirical software engineering are borrowed
from two research areas: Statistics and Machine Learning.
For instance, Andreou et al. use a machine learning tech-
nique called decision trees, to model and predict the costs
involved in software development [2]. Elish et al. use a
machine learning technique called support vector machines
(SVM), to predict defect-prone modules at NASA [7]. They
find that machine learning techniques perform as well as
statistical approaches for defect prediction.

One of the most popular statistical techniques is regression
modelling. For instance, Nagappan et al. use regression
models to predict defect density based on a measure of
changeability, named code churn [18]. Within the same vein
of research, Zimmermann et al. use regression models to
study which metrics are the best performing predictors for
software defects in the Eclipse project [30], as well as for
cross-project defect prediction [29].

Modelling Approaches. Since day one, researchers in
empirical software engineering have built global models, to
predict development effort and software defects with high
accuracy [15], as well as for understanding of software
engineering phenomena [5], [16]. In this work, we call
models that are learned on a complete dataset, a “global”
model, as they take the complete data with all its inherent
variation into account.

However, recent research suggests that empirical SE
should focus more on context specific principles, in par-
ticular Menzies et al. advise that future work in empirical
software engineering explore lessons learned from individual
subsets in contrast to lessons learned across whole data [14].
In this work, we call models that are learned by subdividing
larger datasets into smaller subsets with similar data prop-
erties, and learning individual prediction models on each
subset of data, “local” models.

A similar issue was also recently raised in the works of
Kamei et al. and Nguyen et al. [13], [20], who identify
potential bias in performance metrics of defect prediction
models, depending on the aggregation granularity of the data
used for building the prediction model. Posnett et al. [22]
recently confirmed the existence of this bias in a study within
the same vein of research as Kamei et al. [13].

Where this paper fits in. The research most closely
related to this paper, is the work by Menzies et al., who
demonstrate that for their WHICH treatment learner, a
partitioning of data along the axis of highest data variability
using their custom built WHERE clustering method, led
to a better fit of WHICH to the underlying datasets [14].
Based on their findings, the authors recommended further



investigation of local vs. global approaches in empirical
software engineering research. We follow this call with the
study at hand. In the following we identify key differences
between the work by Menzies et al. and our study.

(1) We follow the idea of data partitioning into local
regions within the context of prediction models based on
linear regression. Our study investigates, whether off-the-
shelf technology that is readily available for practitioners
and researchers can experience the same benefits of data
partitioning.

(2) In addition to evaluating goodness of fit, we perform
predictions in an experimental setup that closely resembles
how practitioners would use the approach. Furthermore, we
evaluate our results through a multiple run cross-validation
setup and investigate the effect of data partitioning on
prediction performance along multiple performance criteria.

(3) We build two types of models: global and local, and
perform comparison between both types. In addition, our
study introduces a third approach: global models with local
considerations, which can be considered as a hybrid between
global and local models. In particular we use the well-
studied implementation of multivariate adaptive regression
splines [11] (MARS). MARS models have found extensive
and successful use in modelling problems in fields outside
of empirical software engineering such as economics [21],
genetics [28], and civil engineering [3].

To the best of our knowledge, our work is the first to
explore the benefits of partitioning software engineering data
along the axis of highest variability within the context of
prediction models based on linear regression functions.

III. CASE STUDY DESIGN

In this section we discuss the design of our case study on
four different datasets. We begin with a general discussion
of the data, followed by a detailed description of our exper-
imental setup, including experimental design and modelling
approaches used.

A. Data Collection and Preparation

All datasets used in our case study have been obtained from
the PROMISE 1 repository, and have been reported to be
as diverse of datasets as can be found in this database [14].
Furthermore, the same datasets have been used in the previ-
ous study by Menzies et al. when investigating the benefit of
data partitioning into local regions for their machine learning
approach. In particular, we obtained two datasets concerned

1http://promisedata.org

Table I: Summary of datasets used in our case study.

Dataset Predictions for Metrics Datapoints
Xalan 2.6 Defects 23 885
Lucene 2.4 Defects 23 340
CHINA Development Effort 19 499
NasaCoc Development Effort 27 154
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Figure 1: Visualization of the correlation analysis for the
Xalan 2.6 dataset. Higher correlations between metrics result
in darker coloured areas (red for positive correlation, blue
for negative corellation).

with defect prediction (Xalan 2.6 and Lucene 2.4), as well
as two datasets concerned with effort prediction (CHINA,
and NasaCoc). A summary of the obtained data is shown in
Table I. For a complete set of descriptions of the variables
in each of the four datasets, we refer the interested reader
to [14].
Correlation Analysis. To prepare each of the four datasets
for use in our experiments, we first carry out a correlation
analysis. In each case, we start from a complete dataset,
and carry out an analysis of potential multi-collinearity
between the metrics (columns) in the datasets. Previous
research [4], [25] has demonstrated that many process and
source code metrics are correlated, both with each other, and
with lines of code (LOC). As an example to illustrate this
problem, we show a visualization of the auto-correlations of
all variables in the Xalan 2.6 dataset in Figure 1. From this
visualization, we observe a number of very high correlations
(dark coloured squares) that we need to take care of,
before using this data for defect prediction. Ignoring such
correlations would lead to increased errors in the estimates
of model performances, and increased standard errors of
predictions [12].
VIF Analysis. Within the same vein of prior research,
we handle multi-collinearity through analysis of variance
inflation factors (VIF) for each dataset [8]. We iteratively
compute VIF measures for all variables and then remove
the variable with the highest VIF value, until no variable
has a VIF measure higher than 5 [8].
The VIF analysis leaves us with a reduced set of variables
in each dataset. For instance, the VIF analysis removed the
variables CBO, wmc, rfc, and amc from the Xalan 2.6
dataset, and the variables CBO, wmc, rfc, and loc from the
Lucene 2.4 dataset. Furthermore, the VIF analysis removed
the variables NPDU_UFP, AFP, PDF_AFP, NPDR_AFP, and
Added in the CHINA dataset, and the variables defects,
and tool from the NasaCoc dataset.

http://promisedata.org
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Figure 2: Overview of our approach for building global and local regression models. This process is repeated 10 times.

B. Model Building Approach

An overview of our approach to build the models used in
our case study is illustrated in Figure 2. In the following we
discuss each model type in more detail.
Global Models. We start the process of building a global
model, by first splitting the dataset into training and testing
data. These splits contain 90% and 10% of the dataset
respectively. The model is learned on the training data, while
predictions using the model are carried out on and compared
to the testing data.

We use a statistical modelling approach, linear regression,
to build a global model. In general, linear regression models
attempt to find the best fit of a multi-dimensional line
through the data, and they are of the form Y = ε0+α1∗X1+
· · ·+αn ∗Xn, with Y the dependent variable, ε0 called the
Intercept of the model, αi the i-th regression coefficient, and
Xi the i-th independent variable. In particular, Y denotes
the measure that we want to predict (number of bugs for
each file in the case of the defect prediction datasets, total
development effort for CHINA, and the number of months
required to develop the software component for NasaCoc),
and Xi denotes the metrics that we base our predictions on.

In empirical software engineering, a common practice is
to first obtain a multitude of metrics for use in prediction
models. For example, the popular PROMISE2007 dataset
[30] contains a total of 197 different software process and
source code metrics on the Eclipse software. When building
regression models, it is important to select a meaningful
subset of independent variables in order to maximize the
predictive power of the regression model, while at the same
time keeping the overall set of variables low enough to avoid
over-fitting. With over-fitting, we describe a situation, where
a prediction model has been tailored too closely to the data
it was learned on, and subsequently has significant problems
to accurately deal with unseen data. For prediction models
in particular, over-fitting is a risk that needs to be avoided
if possible.
Local Models. The process for building local models starts
out similarly to that of building global models: by randomly
splitting the dataset into training data and testing data.

As a main difference between global and local models,
the training data is then partitioned into regions with local
properties by a clustering algorithm. We want to note at this
point that the primary goal of this paper is using partitions of
similar data for building defect and effort prediction models,
rather than the discussion of obtaining the best possible
partitions with one clustering technique or the other.

Since we have no prior knowledge as to the optimal
number of subsets in our datasets, we decided to employ
a state-of-the-art model-based clustering technique called
MCLUST [10]. This technique automatically derives all nec-
essary parameters within the technique itself, and partitions
a dataset into an approximately optimal number of subsets
based on the variability in the data [9].

We applied the MCLUST clustering technique, to divide
each of the four prediction datasets into smaller subsets,
within which observations have similar properties. Figure 3
shows an overview of the subsets derived with this clustering
technique. We observe that MCLUST produces a different
amount of clusters depending on the random sample of the
training data. For 10 random splits of the dataset into training
and testing data, we found that the number of clusters ranges
between 2 and 9.

The final local model is obtained by creating individual
regression models of the form Y = ε0 + α1 ∗ X1 + · · · +
αn ∗Xn for each local region of the data (clusters produced
by MCLUST). To carry out predictions on the testing data
using local prediction models, we have to take the additional
step of determining for each input the most similar cluster
first. After the appropriate cluster has been determined for
each entry in the testing data, we then subsequently use the
local model that has been fitted to that particular cluster, and
carry out the individual prediction.

C. Automatic Model Selection

To handle the potential threat of overfitting in global and
local models, we need to select an appropriate subset of
independent variables. We follow a common automated
model selection approach based on the Bayesian informa-
tion criterion (BIC) [24], called Bayesian model averaging
(BMA) [23]. Model selection based on the BIC measure
resolves the problem of over-fitting by introducing a penalty
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Figure 3: Number of clusters generated by MCLUST in each run of the 10-fold cross validation.

term for each additional prediction variable entering the
regression model [23].

For practical purposes, we use a publicly available imple-
mentation of BIC-based model selection, contained in the
R package: BMA. The input to the BMA implementation
is the dataset itself, as well as a list of all dependent and
independent variables that should be considered. In our case
study, we always supply a list of all independent variables
that were left after VIF analysis. The output of the BMA
implementation is a selection of independent variables, such
that the linear regression model built with these variables
will produce the best fit to the data, while avoiding over-
fitting.

D. Multivariate Adaptive Regression Splines

We use Multivariate Adaptive Regression Splines [11], or
MARS, models, as an example of a global prediction model
that takes local considerations of the dataset into account.
MARS models have become increasingly popular in medi-
cal, and social sciences, as well as in economical sciences,
where they are used with great success [3], [21], [28]. A
MARS model has the form Y = εo + c1 ∗H(X1) + · · · +
ci ∗ H(Xn), with Y called the dependent variable (that is
to be predicted), ci the i-th hinge coefficient, and H(Xi)
the i-th “hinge function”. Hinge functions are an integral
part of MARS models, as they allow to describe non-linear
relationships in the data. In particular, they partition the
data into disjoint regions that can be then described sepa-
rately (our notion of local considerations). In general, hinge
functions used in MARS models take on the form of either
H(Xi) = max(c,Xi−c), or H(Xi) = max(c, c−Xi), with
c being some constant real value, and Xi an independent
(predictor) variable.

A MARS model is built in two separate phases. In the
forward phase, MARS starts with a model which consists of
just the intercept term (which is the mean of the independent
variables). It then repeatedly adds hinge functions in pairs
to the model. At each step it finds the pair of functions that
gives the maximum reduction in residual error. This process
of adding terms continues until the change in residual error

is too small to continue or until a maximum number of terms
is reached. In our case study, the maximum number of terms
is automatically determined by the implementation, and is
based on the amount of independent variables we give as
input. For MARS models, we use all independent variables
in a dataset after VIF analysis.

The first phase often builds a model that suffers from
overfitting. As a result, the second phase, called the back-
ward phase, prunes the model, to increase the model’s gen-
eralization ability. The backward phase removes individual
terms, deleting the least effective term at each step until it
finds the best submodel. Model subsets are compared using
a performance criterion specific to MARS models, and the
best model is selected and returned as the final prediction
model.

MARS models have the advantage that a model selection
phase is already built-in by design, so we do not need to
carry out a model selection step similar to BIC, as we do
with global and local models. Second, the hinge functions
in MARS models do already model disjoint regions of
the dataset separately, such that there is no need for prior
partitioning of the dataset with a clustering algorithm. Both
advantages make this type of prediction model very easy to
use in practice.

E. Cross Validation

For better generalizability of our results, and to counter
random observation bias, all experiments described in our
case study are repeated 10 times on random stratified sub-
samples of the data into training (90% of the data) and
testing (10% of the data) sets. Stratification is carried out
on the measure that is to be predicted. We evaluate all
our findings based on the average over the 10 repetitions.
This practice of evaluating results is a common approach in
Machine Learning, and is often referred to as “10-fold cross
validation” [27].

IV. RESULTS

In this section, we present the result of our case study.
This presentation is carried out in three steps that follow
our initial three research questions. For each part, we first



describe our evaluation approach, and then discuss and
interpret our findings.

RQ1. Is there an advantage of using local models over global
models, with respect to goodness of fit?

Our aim in this section is to evaluate the goodness of fit
of the prediction models produced by each of the three
modelling approaches. In general, a goodness of fit mea-
sure describes how well the prediction model describes
the observations in the data from which it was learned.
The goodness of fit measure is of specific importance for
software engineering research that is trying to use prediction
models as a means of understanding underlying processes.

For example, if one was to investigate the relationships
between post release defects and source code complexity, a
regression model with post release defects as the dependent
variable, and complexity measures as independent variables
could be used. However, if the corresponding statistical
model showed a low goodness of fit measure, insights
derived from the investigations of the model are in the best
case misleading (and in the worst case wrong).

Approach. A commonly used goodness of fit measure for
linear regression models is the coefficient of determination,
R2. In general, the R2 measures the amount of variability
in the data described by the linear regression model, or
in other words, how close the fitted regression model is
to the actual values in the dataset. However, past research
has demonstrated that R2 should not be used to compare
different regression models, as the measure is highly
biased towards the number of independent variables in the
model [12]. The more independent variables the regression
model contains, the higher its R2 measure will be, even if
the independent variables do not describe the dependent
variable in any meaningful way. Instead of using R2, we
use two different goodness of fit measures that have been
proposed in literature. The two measures are discussed
below.

Akaike Information Criterion. To better judge the goodness
of fit between global prediction models and local prediction
models, we use the Akaike information criterion (AIC) [1].
AIC is a relative goodness of fit measure based on
information entropy. On of the main advantages over R2 is
the robustness of this measure against a bias towards using
more independent variables in a model. AIC is widely
used to judge the relative goodness of fit between different
regression models [23]. In general, a lower AIC measure
corresponds to a better fit of the model to the data. We want
to note, that for MARS models, the Akaike information
criterion is not available as a relative measure of goodness
of fit, so we cannot compare MARS models directly.

Table II: Case study results: goodness of fit for global
models. For AIC, smaller is better, for Correlation, higher
is better.

Global Local MARS
Dataset AIC Cor AIC Cor Cor
Xalan 2.6 2,190.30 0.33 352.98 0.52 0.69
Lucene 2.4 1,380.35 0.32 462.43 0.60 0.83
CHINA 8,696.17 0.83 1,805.06 0.89 0.89
NasaCoc 858.95 0.93 158.37 0.97 0.99

Correlation between predicted and actual values on trained
data. In addition to the AIC measure for goodness of fit, we
measure how well a model was able to learn from the train-
ing data. For this purpose, we feed the same training dataset
into the model again to predict values, and finally measure
the correlation between actual values and predicted values.
This measure of correlation is of particular significance for
defect prediction models. For defect prediction, models are
often not concerned with the absolute number of post-release
defects, but rather in a ranking of source code entities from
“most buggy” to “least buggy” [18]. Resources and testing
effort are then allocated according to that ranking.
For both goodness of fit criteria, we need to normalize
values for local models across clusters. For instance,
consider the following case. Imagine, MCLUST would
partition a dataset into six clusters, of which one cluster
C1 contained 90% of the data and the other five clusters
C2 to C6 each contained 2% of the data. Now, suppose
a hypothetical goodness of fit measure for C2 to C6 of
0.9, and 0.05 for C1. The median goodness of fit in this
case would turn out to be 0.9, greatly underestimating the
contribution of cluster C1 which contains the majority of
the data. To counter this bias, we normalize by the size of
each cluster relative to the size of the complete (training)
dataset.

Findings. Table II summarizes the results of our experiment.
Overall, we observe that local models exhibit a better relative
goodness of fit measure (AIC) on the same datasets than
global models.

The same observation holds true for the analysis of
correlation fit. Our analysis of correlation suggests, that
MARS models produce very good fits to the underlying
data, outperforming both, global prediction models, as well
as local prediction models. This further strengthens our
conjecture of the beneficial effect of data localization.

To test for the statistical significance of differences be-
tween correlation fits, we performed a Fisher’s Z-test. We
found that all differences were statistically significant at
p < 0.01, except one: the correlation fit of the local model
and the MARS model in the CHINA dataset (in both cases
correlation fit was 0.89).

Overall, the results of our case study confirm that in the
context of regression models for defect and effort prediction,



Table III: Summary of experimental results on prediction
model performance. The best observations in each column
are marked in bold font face. Stars denote that the best value
is statistically significant from the others at p < 0.01.

Global Models
Dataset Error Sum Median Error Error Var Cor
Xalan 2.6 61.07 0.64 0.37 0.36
Lucene 2.4 49.72 1.15 2.22* 0.71
CHINA 91,592.52 765.00 14,194,155.12 0.82
NasaCoc 48.75 3.26 31.63 0.95

Local Models
Dataset Error Sum Median Error Error Var Cor
Xalan 2.6 57.35 0.52 0.57 0.50
Lucene 2.4 55.15 1.15 217.63 0.67
CHINA 83,420.53 552.85 19,159,955.36 0.85
NasaCoc 41.49 2.14 703.19 0.95

Global Models with Local Considerations
Dataset Error Sum Median Error Error Var Cor
Xalan 2.6 50.90* 0.40* 0.36* 0.56*
Lucene 2.4 43.61* 0.94* 2.51 0.72
CHINA 25,106.00* 234.43* 1,102,256.01* 0.99*
NasaCoc 26.95* 1.63* 25.46* 0.97*

data localization leads to significantly better fits of prediction
models to the data.

RQ2. Is there an advantage of using local models over global
models, with respect to prediction performance?

In the second part of our evaluation, we aim to investigate
the actual performance of the prediction models when
applied on unseen data. Better performing prediction
models are of great value to practitioners since they allow
to take better informed decisions and actions. For this
purpose, we have carried out experiments on each dataset
as follows.

Approach. To evaluate the prediction performance of each
of the three prediction modelling approaches, we follow
the same steps of model building described in the previous
section. We partition each dataset into training data and
testing data, and learn a global model, a local model, and
a global model with local considerations from the training
data.

Next, we use the testing data as input to these models
to obtain predictions. For global models and global models
with local considerations, we can directly take each row
in the testing data as an input to the linear function that
describes the prediction model. For local models, we first
need to determine for each datapoint in the testing set the
most similar cluster, and then use the corresponding local
prediction model from that cluster to carry out the prediction.

We compare these predicted values to the actual values
recorded in the testing data, and evaluate prediction
performance based on the four different criteria. These
criteria are discussed in detail below.

Evaluation Criteria and Findings. The results of our
prediction experiments are summarized in Table III. Based
on previous research in the area [14], we decided on the
following evaluation criteria to compare the performance of
prediction models.
1. Absolute sum of prediction error. The sum of all prediction
errors

∑
abs(Yactual − Ypredicted) tells us how good the

prediction model performed overall on the testing data.
The closer the sum of prediction errors is to 0, the better
the performance of the prediction model. This performance
criterion is of importance to practitioners as it gives an
indication of how good a prediction model captures reality.

Our results for this evaluation criterion are recorded in the
first column of Table III. Overall, we observe that the local
model outperforms the global prediction model in three out
of four cases, Lucene 2.4 being the single exception. How-
ever, the global model with local considerations outperforms
both the global model and the local model in all cases.
2. Median prediction error. This performance criterion tells
us, how far off predictions were from the actual value
on average. The closer this measure is to 0, the better
the performance of the prediction model. In general, this
criterion can be seen as the prediction accuracy of the model.

Figure 5 illustrates a comparison of the distributions
of median prediction errors across all 10 runs on each
individual dataset. Overall, we observe that the local model
outperforms the global model in three out of four cases, and
in one case (Lucene 2.4) shows comparable performance. At
the same time, the global model with local considerations
(MARS) demonstrates a significantly lower median predic-
tion error distribution, which in three out of four cases has
a shorter quartile range than both other approaches.

We performed Mann-Whitney-U tests to confirm that
the differences in distributions of median prediction error
are statistically significant. The only difference that was
not deemed statistically significant based on this t-test is
GLOBAL vs. LOCAL in the Lucene 2.4 dataset.
3. The variance of prediction errors. This performance
criterion tells us, how wide the values of prediction errors are
spread. In practice, we are seeking prediction models with
a low spread, i.e., a consistent range can be better planned
for, than unexpected large errors.

Overall, we observe that the global prediction model has
less variance than the local model. However, the global
model with local considerations outperforms the local model
in 3 out of 4 times. Upon further analysis of prediction
errors on a case-by-case basis, we found that a) the average
predictions from global models are further off from the
actual value, but this interval of prediction error is narrow;
and b) even though the median error in local models is
improved, these models can, on occasion, be very far off the
actual value. As an example of this observation, we show
the differences between actual values and predicted values in
the CHINA dataset for each modelling approach in Figure 4.
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Figure 4: Differences between actual value and predicted value across 10 folds, CHINA dataset.

D
is

tri
bu

tio
n 

of
 M

ed
ia

n 
Pr

ed
ic

tio
n 

Er
ro

rs

200

400

600

800

1000

2

4

6

8

CHINA

●

● ●

NasaCoc
●

MARS GLOBAL LOCAL

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.30
0.37
0.45
0.53
0.62
0.70

LUCENE

●●

XALAN

●

MARS GLOBAL LOCAL

Figure 5: Distributions of median predictions errors for each
dataset and modelling approach.

Our results show that both, the MARS model, and the
global model perform consistent across all predictions. How-
ever, we observe 3 distinct spikes in the local model around
predictions number 180, 300 and 360, whereas prediction
error spikes of similar magnitude are absent from the predic-
tions of global and MARS models. For practical purposes,
this introduces a risk to practitioners who might come to
rely on predictions that are close to reality, but encounter
the rare, yet utterly wrong prediction.
4. The correlation between predicted and actual values.
This performance criterion is of particular interest for defect
prediction, as it measures the extent to which the prediction
model is able to come up with a correct ranking of defective
files, which in practical applications of defect prediction
models is often used for resource allocation.

With respect to this evaluation criterion, our results are
inconclusive. All three modelling approaches show similar
performance in three out of the four datasets. In the case
of the Xalan 2.6 defect prediction dataset, we observe
that both the local model and the global model with local
considerations produce a significantly better ranking than the
global model.

RQ3. What are the considerations in the use of local models
over global models for practitioners?

One of the main applications of prediction models when
used by practitioners is obtaining an understanding of the
software project, to better guide future actions. For example,
a manager might not be interested in the absolute predicted

value of bugs per file, but rather would like to know what
actions he or she should take in order to increase software
quality. One possible way to obtain such insights when using
regression models as prediction models is the use of response
plots [12]. These plots describe, how the dependent variable
(i.e., bugs and effort) reacts when we change the value of a
single prediction variable (while at the same time keeping
all other variables at their median values).

As an example, we show the response plots for four pre-
diction variables found in the global model that was learned
on the Xalan 2.6 dataset for the 9th fold in Figure 6a. For
example, the response plot for variable ce, which measures
the efferent couplings (how many other classes are used by
the specific class for which the model predicts bugs), shows
us that as the coupling increases, so does the bug-proneness.
However, response plots obtained from global prediction
models show only general trends, as global models are fitted
across the complete dataset. Throughout our case study, we
have observed that when building local prediction models,
the individual prediction models that are learned from each
of the clusters differs both, in the prediction variables that
were deemed significant for that portion of the data, as well
as the overall trends.

For example, Figure 7 shows three response plots for local
models learned from Cluster 1 and Cluster 6 in the 9th fold
of our experiments on the Xalan 2.6 dataset. Notably, the ob-
served effects of all three independent variables on bugs are
contradictory. For Cluster 1, an increase in ic (measuring
the inheritance coupling through parent classes) ,mfa (the
degree of functional abstraction), and npm (number of public
methods in a class) is predicted to lead to an increase in
bug-proneness. At the same time, for Cluster 6, the increase
in the same variables is predicted to lead to a decrease in
bug-proneness.

While local models are more precise, the trends are a)
specific to particular regions of the data, so a practitioner
will first have to determine the appropriate cluster for his
problem at hand, and b) for each cluster there might be
many recommendations to choose from. As an alternative,
we propose the use of response plots obtained from global
models with local considerations, such as MARS. An ex-
ample of a response plot for four prediction variables in the
MARS model learned on the Xalan 2.6 dataset is shown
in Figure 6b. By design, the hinge functions of the MARS
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Figure 6: Global models report general trends, while global models with local considerations give insights into different
regions of the data. The Y-Axis describes the response (in this case bugs) while keeping all other prediction variables at
their median values.
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Figure 7: Example of contradicting trends in local models
(Xalan 2.6, Cluster 1 and Cluster 6 in Fold 9).

model already partition the data into regions with individual
properties. For example, we observe that an increase of ic
(measuring the inheritance coupling through parent classes)
is predicted to only have a negative effect on bug-proneness
when it attains values larger than 1. Thus a practitioner might
decide a different course of action than he or she would have
done based on the trends outlined by a global model.

V. CONCLUSIONS

In this study, we investigated the difference of three
different types of prediction models. Global models are
built on software engineering datasets as-is, while for
local models we first subdivide the datasets into subsets of
data with similar observations, before building individual
models on each subset. In addition, we also studied a
third approach: multivariate adaptive regression splines as
a global model with local considerations. MARS by design
takes local considerations of individual regions of the data
into account, and can thus be considered a hybrid between
global and local models.

Think Locally
We evaluated each of the three modelling strategies in a
case study on four different datasets, which have been
used in prior research on the WHICH machine-learning
algorithm [14]. The results of our case study demonstrate
that clustering of a dataset into regions with similar

properties and using the individual regions for building of
prediction models leads to an improved fit of these models.
Our findings thus confirm the results of Menzies et al.,
who observed a similar effect of data localization on their
WHICH machine-learning algorithm. These increased fits
have practical implications for researchers concerned in
using regression models for understanding: local models
are more insightful than global models, which report only
general trends across the whole dataset, whereas we have
demonstrated that such general trends may not hold true for
particular parts of the dataset. For example, we have seen
in the Xalan 2.6 defect prediction dataset that particular
sets of classes are influenced differently by attributes such
as inheritance, cohesion and complexity. Our findings
reinforce the recommendations of Menzies et al. against
the use of a “one-size-fits-all” approach, such as a global
model, when trying to account for such localized effects.

Act Globally
When the goal is carrying out actual predictions, rather than
understanding, local models show only small improvements
over global models, with respect to prediction error and
ranking. In particular, building local models involves a
significant overhead due to clustering of the data. Even
though clustering algorithms such as the one presented in
the work by Menzies et al. [14] might run in linear time, we
still have to learn a multitude of models, one for each cluster.
One particular point that we have not addressed in our study
is whether the choice of clustering algorithm influences the
final performance of the local models. While our choice was
to use a state-of-the-art model-based clustering algorithm
that partitions data along dimensions of highest variability,
future research may want to look deeper into the effect that
different clustering approaches have on the performance of
local models.

Surprisingly, we found that the relatively small increase
in prediction performance of local models is offset by
an increased error variance. While predictions from local
models are close to the actual values most of the time, we
observed the occasional very high errors. In other words,
while global models are not as accurate as local models,
their worst case scenarios are not as bad as we observe with
local models. We want to note however that this finding



stand in conflict with the findings of Menzies et al., who
observed the opposite: their clustering algorithm decreases
error variance of local models both within the inter-quartile
range and at the 100th percentile [14]. Future research may
warrant further insight into this disparity.

Lastly, for practical applications of guiding future de-
cisions, we observed that global models produce general
trends, which might not hold true for particular regions of
the data. However, as an alternative, local models produce
too much insight, that practitioners may find hard to put into
practice, especially with respect to conflicting observations
across different clusters. Global models that take local con-
siderations into account, such as the MARS model, combine
the best of both worlds.

REPEATABILITY

To enable repeatability of our work, and invite future re-
search, we will be providing all datasets, tools, and the com-
plete set of R code that have been used to conduct this study
at an online repository under http://sailhome.cs.
queensu.ca/replication/local-vs-global/.
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