
Do Bugs Foreshadow Vulnerabilities?
A Study of the Chromium Project

Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan
Department of Software Engineering

Rochester Institute of Technology,

134 Lomb Memorial Drive

Rochester, NY, USA 14623

1+585-475-7829

{fdc7162,axmvse,mxnvse}@rit.edu

Abstract—As developers face ever-increasing pressure to engi-
neer secure software, researchers are building an understanding
of security-sensitive bugs (i.e. vulnerabilities). Research into min-
ing software repositories has greatly increased our understanding
of software quality via empirical study of bugs. However, con-
ceptually vulnerabilities are different from bugs: they represent
abusive functionality as opposed to wrong or insufficient function-
ality commonly associated with traditional, non-security bugs. In
this study, we performed an in-depth analysis of the Chromium
project to empirically examine the relationship between bugs
and vulnerabilities. We mined 374,686 bugs and 703 post-release
vulnerabilities over five Chromium releases that span six years of
development. Using logistic regression analysis, we examined how
various categories of pre-release bugs (e.g. stability, compatibility,
etc.) are associated with post-release vulnerabilities. While we
found statistically significant correlations between pre-release
bugs and post-release vulnerabilities, we also found the asso-
ciation to be weak. Number of features, SLOC, and number of
pre-release security bugs are, in general, more closely associated
with post-release vulnerabilities than any of our non-security
bug categories. In a separate analysis, we found that the files
with highest defect density did not intersect with the files of
highest vulnerability density. These results indicate that bugs
and vulnerabilities are empirically dissimilar groups, warranting
the need for more research targeting vulnerabilities specifically.

I. INTRODUCTION

Developers are facing an ever-increasing pressure to en-

gineer secure software. A simple coding mistake or design

flaw can lead to an exploitable vulnerability if discovered by

the wrong people. These vulnerabilities, while rare, can have

catastrophic and irreversible impact on our increasingly digital

lives. Vulnerabilities as recent as Shellshock and Heartbleed

are reminders that small mistakes can lead to widespread

problems. To engineer secure software, developers need a

scientifically rigorous understanding of how to detect and

prevent vulnerabilities.

We can build an understanding of vulnerabilities by viewing

them as security-sensitive bugs. That is, a vulnerability can

be defined as a “software defect that violates an [implicit or

explicit] security policy” [1]. Research into mining software

repositories has greatly increased our understanding of soft-

ware quality via empirical study of bugs. Researchers have

provided a myriad of metrics, prediction models, hypothesis

tests, and other actionable empirical insight that speak to the

nature of bugs [2]–[4]. At first glance, research on software

quality should translate to software security.
However, vulnerabilities are conceptually different than

traditional bugs. Vulnerabilities represent an abuse of func-

tionality as opposed to wrong or insufficient functionality

commonly associated with non-security bugs. Vulnerabilities

are about allowing “too much” functionality so as to be open to

attack. For example, an open permissions policy may function

perfectly well for most users, but would be quickly exploited

by attackers. Or, a simple memory leak can be coerced into

denial-of-service attack. As a result, vulnerabilities are about

what the system is supposed to prevent from happening beyond

the functionality that the customer requires.
Thus, the relationship between bugs and vulnerabilities

deserves empirical examination. In particular, can software

quality problems foreshadow security problems? If the corre-

lation between bugs and vulnerabilities is strong, then empiri-

cal analyses should focus primarily the super-group of bugs.

If not, perhaps some subgroups of bugs (e.g. stability bugs)

may foreshadow vulnerability problems in the future.
The objective of this research is improve our fundamental

understanding of vulnerabilities by empirically evaluating the
connections between bugs and vulnerabilities. We conducted

an in-depth analysis of the Chromium open source project

(a.k.a Google Chrome). We collected code reviews, post-

release vulnerabilities, version control data, and bug data over

six years of the project. We conducted regression analysis

to evaluate the strength of association, along with examining

subgroups and various rankings of the files. We repeated our

analysis across five annual releases to gauge the sensitivity of

the results. We focused on the following research questions

(and had the following results):

RQ1. Are source code files fixed for bugs likely to be fixed
for future vulnerabilities? (We found that files with more pre-

release bugs are slightly more likely to present post-release

vulnerabilities.)

RQ2. Are some types of bugs more closely related to vulnera-
bilities than others? (Here we discovered that while of some

types of pre-release bugs present a stronger association than

others to post-release vulnerabilities, this relation is overall

weak.)

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE

DOI 10.1109/MSR.2015.32

269

RQ3. Do the source code files with the most bugs also
have the most vulnerabilities? (We found that files with the

top count of pre-release bugs have only some post-release

vulnerabilities.)

The rest of the paper is organized as follows. Sections II

and III cover the terminology and related work introducing the

concepts to understand of the paper. Section IV we present

our research questions. In Section V we introduce and explain

the Chromium browser. Section VI explains our analysis

methodology approach, answers the research questions and

discusses the results. Section VII we discuss the threats to

validity and we finally conclude in Section VIII with a brief

summary.

II. TERMINOLOGY

We use various technical and statistical terms with respect

to processing and analyzing the data. We define these terms

first ensuring that the essence of the paper can be understood

by a broader audience.

A. Data terms
When we refer to a release, we are referring to a milestone

in the software development life cycle for our case study

project. Releases represent an snapshot of all source code files

at a specific point in time. The project evolves from release to

release through small changes called commits. The commits

represent unique changes to the source code of the project,

and are recorded by a version control system (e.g. Git). We

also make the special distinction between non-security related

software flaws (bugs), that manifest as the lack of expected

functionality. Security related software flaws (vulnerabilities)

manifest as violation of the system’s security policies [1]. We

categorize files of a release as vulnerable if they were fixed

as a result of a vulnerability post-release, and other files are

neutral (i.e. no vulnerabilities were known to be associated

with them).
We also use the metric Source lines of code (SLOC) as a

measurement of file size. In this study source comments or

whitespace are not considered SLOC. SLOC forms part of a

group called traditional software metrics [5] (Other metrics in

this group are Code Churn and ciclomatic complexity).

B. Statistics terms
Spearman correlation coefficient: This is an statistical test

for measuring the association between two or more varia-

bles. This metric has the ability to rank the strength of the

correlation between variables. The following scale is used

to measure and interpret the result values [6]: a) ± 0.00 -

0.30 “Negligible” b) ± 0.30 - 0.50 “Low correlation” c) ±
0.50 - 0.70 “Moderate correlation” d) ± 0.70 - 0.90 “High

correlation” e) and ± 0.90 - 1.00 “very High correlation”.
Mann-Whitney-Wilcoxon test (MWW): This test evaluates

the difference in values of two populations, and reveals if the

two populations are statistically equal when compared against

a null hypothesis. Previous software metrics studies [4], [7]

have suggested this as suitable test for validating software

metrics.

Cohen’s D Statistic: The Cohen’s D is an effect size

measure that evaluates the strength of a phenomenon [8],

[9]. While MWW measures statistical significance, it does not

measures the strength of the association. In this study we make

use of the Cohen’s D to support the results of the MWW test

and measure how closely related the vulnerable population is

to neutral population. Cohen’s D is defined as:

δ =
mean difference

standard deviation

The original paper measures in terms of non-overlap percen-

tage, We use the inverse of that measure [10] in this paper ,

where a lower Cohen’s D indicates that a larger overlap exists.

The following scale was proposed originally by the authors

[11] to interpret the results in terms of non-overlap: a) 0.20

“Small” b) 0.50 “Medium” c) or 0.80 “Large”.

Logistic Regression: Logistic regression analysis predicts

the possibility of a binary outcome based on a set of indicator

variables. The goal of a logistic regression is to find the

equation (combination of the right indicator variables) that

best predicts the probability of a true or false outcome [2],

[12].

Akaike information criterion (AIC): This is a measure of

relative model fitness calculated on generalized models. This

metric can be used to rate a group of models and find the best

one among them. By itself the AIC is not a measure of how

fitted the model is, but instead it is relative rank, suitable for

comparing with other models that were trained using the same

data set. A lower the AIC value, means a better fit model [2],

[13], [14].

Percent of deviance explained (D2): This measure indicates

how well the data fits a statistical model. D-squared is the

equivalent measure of R-squared for linear models [2], [15],

except that this metric is employed to evaluate the amount of

deviance that the model accounts for. This measure can also be

used to evaluate the goodness of fit of a group of generalized

linear models. A higher D2 means a better fit model.

Precision and recall: When we use logistic regression to

predict the outcome of a binary variable, the model can

make two types of mistakes: False Positives (FP) and False

Negatives (FN). False positives are when the model identified

neutral file as vulnerable, and false negatives are when the

model identifies a vulnerable file as neutral. The relevant

values are defined as True Positives (TP) and True Negatives

(FN), when the model accurately identifies a vulnerable or

neutral file.

Precision is defined as the fraction of all the predictions that

are relevant , that is precision = TP
(TP+FP) . Recall is defined

as the fraction of all relevant instances that are retrieved, that

is recall = TP
(TP+FN) . To serve as example and to explain the

application of this metric in our study we present the following

scenario: Imagine a data set of 50 files, from which 30 files are

known to be “vulnerable”. Then we use a model to retrieve

30 files, if the model is able to identify 10 vulnerable files

correctly but misidentifies on 20 files, here precision = 10
20

and recall = 10
30 .

270

F-measure: This is a metric that can be interpreted the as

a weighted average of precision and recall. It is considered a

more complete metric that using only precision and recall [16]

because it takes into account both values. The F-measure is

defined as:

F1 = 2 · precision · recall
precision + recall

Area Under the ROC Curve (AUC): Receiver operating

characteristic curves can be used to graphically represent the

performance of a logistic model by plotting the precision and

recall. The area under the ROC curve measures the ability

of the model to correctly classify the binary outcome. To

understand this concept, consider the following example: We

have separated the files in vulnerable and neutral; after that we

randomly select two files one from the vulnerable group and

one from the neutral group and then use a model to predict

the outcome (Vulnerable or Neutral); the AUC represents the

percentage of observations in which the model will be able to

discriminate correctly between two files.

III. RELATED WORK

Other researchers have studied the relationship between

bugs and vulnerabilities, and this work extends those questions

with further analysis and a larger data set. Gegick, M. et al.

[3], [17] studied the prediction of attack prone components,

by identifying and ranking components that are more likely

to present vulnerabilities. These rankings were proposed to

prioritize the security risk management efforts. In their study

they used automated static analysis tools to calculate different

metrics and show how these metrics relate with a higher

vulnerability risk. This study directly relates with our research,

as it tries to evaluate vulnerability-proneness in files based

on non-security factors (i.e. code churn, SLOC, and previous

manual inspections), we go a step further by taking account

multiple releases as factor.

In a prior study by Meneely, A. et al. [4], the authors evalua-

ted code review effectiveness and the Linus laws applying in

terms of vulnerabilities. Investigating if “many eyes make all

the bugs shallow”, also apply to vulnerabilities. The results

from this previous study show that contrasted with traditional

bugs, vulnerabilities are still missed by many reviewers, indi-

cating an intrinsic difference in the two groups, that we aim to

clarify. We have expanded the data set from this previous study

and have included four additional releases, introduced the bug

report data and recollected the commit logs, code reviews and

vulnerability entries.

Studies have shown the potential use of logistic regression

analysis as a way to predict future software flaws, based on

traditional software metrics [5] and defects. A previous study

by T.-H Chen et al. [2] shows the use of logistic regression

analysis using various static and historical defects metrics to

explain future software defects. This study takes into account

the defect history of each topic and evaluate the probability

of future defects. We borrow the historical analysis from their

approach by apply it to the evaluation of future vulnerability.

Also Shihab et al. [18] evaluated different software metrics

in look for patterns that lead to high impact defects. These

defects break the functionality of production software systems

and cause a negative impact on customer satisfaction. This

study also makes use of logistic regression as the means of

predicting a binary outcome. Their findings indicate that while

logistic regression analysis can be used to predict high impact

defects, there is a need of further development to bring these

predictions techniques closer to an industry adoption.

Other studies have evaluated the occurrence security-related

bugs through the analysis of source control repositories and

static analysis tools. Mitropoulos, D. et al. [19] studied the

relation of software bugs compared to other bugs categories,

using maven repositories. Their results indicate security bugs

do not have a recognizable pattern in the projects they

studied, and encourage the further investigation on this topic.

Mitropoulos, D. et al. [20] also studied the evolution of

security related bugs by tracking down their introduction.

Their results show that the number of security-related software

bugs increases as the system evolves and it is influenced

by external software dependencies. These two studies use

static analysis tools to identify bugs, in contrast We use data

from a bug tracking system and bug labels, eliminating bias

introduced by the tool.

A recent study by Tantithamthavorn, C. et al. [21] evaluates

the impact of mislabeling in the interpretation and performance

of prediction models. Their results show that bug labeling

mechanisms are a reliable source of bug classification and

model training. Their findings increase the relevance of our

research as we make use of Google Code labels to classify

the pre-release bugs.

IV. RESEARCH QUESTIONS

We approach our analysis by first conducting an overall

analysis with a single variable, then we conducted our analy-

sis by using the categorizations provided by the Chromium

project. Finally, we examined how vulnerabilities are spread

across files when ranked by defect density. Thus, our three

research questions are:

• RQ1. Are source code files fixed for bugs likely to be

fixed for future vulnerabilities?

• RQ2. Are some types of bugs more closely related to

vulnerabilities than others?

• RQ3. Do the source code files with the most bugs also

have the most vulnerabilities?

V. DATA: THE CHROMIUM PROJECT

The Chromium Browser is the open source project behind

Googles Chrome Browser. The Chromium project is a large

project consisting of more than 4 million Source Lines of Code

(SLOC). We selected this project because its high visibility and

popularity in the open source developer community and more

significantly because it offers different analysis opportunities

and perspectives that can be explored using software repository

mining techniques [22]. Our in-depth analysis to produce this

data involved analyzing code reviews, investigating vulnerabi-

lity claims, and maintaining traceability between the artifacts.

271

A. Chromium Vulnerabilities (NVD, Public Disclosures)

The Chromium team regularly acknowledges vulnerabilities

that have been fixed in each new release. These post-

release vulnerabilities are recorded in the National Vulnerabi-

lity Database (NVD) and given a Common Vulnerabilities

and Exposures (CVE) identifier. However, not every CVE

entry is accurate. Thus, we conducted manual analysis of

each vulnerability to ensure that it was acknowledged by

Chromium, fixed, and the fix was released. These vulnera-

bilities are post-release vulnerabilities that are reported to the

Chromium Team, and present potential threats users. In this

study, we have traceability from 703 CVE entries to the code

review and the commit that fixed the vulnerabilities.

A key part of mining the vulnerability data were tracing

them to code reviews and git logs. We mined 242,635 Git

[23] commits, spanning across six years of development of the

Chromium project. These commits contain information about

the source files that were change. Additionally the commits

contain the ID of the bug report that this change contributes

to fix and the ID of the code review that inspected the change

before adding it to the main code base. This IDs are used to

link the records in a relational database. The commit data is

the central point of our data set, combining together the bugs

and the vulnerabilities through code reviews.

B. Chromium Bug Tracking System (Google Code)

Chromium uses Google Code as bug tracking system [24],

[25]. We have collected 374,686 bug entries with 5,825

different labels, and 3,801,444 bug comments. A bug entry

does not necessarily mean an actual flaw in the system: system

features, and other tasks are in this database as well. The

Google Code labels function as a taxonomy system, and

they allow the developers to label specific keywords to the

bugs reports, including the “bug” label. The system then uses

these labels to categorize, filter and search the bug repository.

Special labels are used to attach additional critical information

like priority (Pri), product category (Cr), operating system

where the bug occurs (OS), possible milestone to release a

fix (M-value) and type of bug. Additionally Google Code

users can manually add arbitrary labels to the bug reports.

To mitigate misspellings of labels, we manually inspected the

label choices throughout the 5,825 labels that were used.

We aggregated these labels and examined how often they

were used. Among the 5,825 labels, only a few were labeled

consistently. For our RQ2 question about categories, we exa-

mined labels that were used over 1,000 times and identified

categories that were not specific to Chromium (e.g. “stability”

is specific to Chromium, but “Milestone18 Migration” is not).

C. Processing By Releases

To account for the evolution of the project, we separated the

data into releases. Chromium utilizes a rapid release cycle,

with a major release coming out approximately every two

months. In prior work [26] we found that vulnerabilities on

average have remained in the system for approximately two

years prior to their fix. Using those results as a guide, a

Fig. 2. Conceptual diagram of data set

vulnerability fixed within one year of a release may have

reasonably existed in the system for up to one year prior

a release. Additionally, we conducted our analysis in time

segments that are non-overlapping to avoid double counting

and ultimately auto-correlation. Thus, we chose five major

releases that were approximately one year apart: versions 5.0,

11.0, 19.0, 27.0, and 35.0.

Throughout this paper, we use the phrase “pre-release bugs”.

In the context of Chromium’s rapid release cycles, this is not

an entirely apt name. Many bugs are exposed to users by some

major release since the product is constantly being release. In

Chromium, we did not see any consistent labeling referring

to pre-release vs. post-release bugs. Our concept of “pre-

release bugs” comes from our own selection of five releases,

not necessarily from bugs that were never part of production

release.

We used this pre-release bug data and post-release

vulnerability data so that no overlap exists between the groups.

As shown in Figure 1, bugs between 5.0 and 11.0 are used

exactly once: in the Release 11.0 analysis. The only overlap is

in our analysis of pre-release “security bugs” and post-release

vulnerabilities: these groups are not entirely the same as some

vulnerabilities are not recorded in the bug-tracking system and

some security-labeled bug entries were never part of a release

to users.

The Git repository contained specific release information

via the tag feature. We performed a manual investigation for

each specific release dates to corroborate the dates, comparing

the actual release of the product to the public and the date of

the final version commit.

D. Computing Metrics

We used Ruby and the Ruby on Rails ActiveRecord libraries

to parse, model, verify and query the data. We used R to

conduct our analysis. We made use of a nightly build process

to integrate and verify long running queries. The conceptual

data diagram can be found in Figure 2.

We set up a process to calculate different file-level metrics

in a release per release basis. We present the file-level metrics

272

Fig. 1. Release time line explaining bug and vulnerability selection criteria. For Release 11: the population of possible pre-release bugs is equal to the bugs
reports opened in (roughly) 2010. The population of possible post-release vulnerabilities is equal to the vulnerabilities reported in the next year.

TABLE I
SELECTED RELEASES BEFORE AND POST PROCESS. NUMBER OF FILES

(VULNERABILITY PERCENTAGE)

Release Date Pre-Process Post-Process

Chromium 5.0 Jan 2010 9,142 (2.55%) 2,276 (11.08%)

Chromium 11.0 Jan 2011 17,005 (3.35%) 4,760 (12.80%)

Chromium 19.0 Feb 2012 21,818 (1.40%) 6,826 (4.61%)

Chromium 27.0 Feb 2013 30,087 (0.98%) 8,451 (3.58%)

Chromium 35.0 Feb 2014 35,871 (0.28%) 8,125 (1.23%)

in Table II. For each file we count the number of pre-release

bugs and the number of post-release vulnerabilities reported in

a one year. We only use source code files, which are primarily

C/C++ file extensions.

To measure the pre-release bug count we evaluated if the

specific file was modified in a commit that linked to a bug

report, if a match is found we add one to the bug count. Only

bug reports opened from a year prior to the specific release

date are taken into account. Additionally in this step we make

use of the Chromium bug labels to categorize the bug count in

different types of bugs. We created 7 bug categories based on

the 7 most vulnerability relevant labels. These 7 labels were

selected from the top most used labels.

To measure the post-release vulnerabilities we evaluated

if the specific file was modified in a commit that linked to

a code review that fixed a vulnerability. In comparison to

the criteria for bugs this is a forward search, only selecting

the vulnerabilities that were reported from the release date

to a year after the release date, this information is selected

as num-post-release-vulnerabilities. The boolean becomes-
vulnerable is set to true if any vulnerabilities are found in

that future date range.

A graphical representation of both selection processes can

be found in Figure 1.

Finally, we removed files that were never fixed for any bugs

nor vulnerabilities. Since no quality nor security data data exist

for these files, no inference can be made about their quality

or security. Table I shows the a summary of the state of the

releases.

VI. ANALYSIS APPROACH & RESULTS

We began an in-depth exploratory statistical analysis using

the metrics calculated at the file level. We used the pre-release

bugs as independent variables and future vulnerabilities as

dependent variable. In this section we explain in detail the

analysis methodology and show the experimental results.

Our first goal was to evaluate the quality of our independent

variables. The validity of our future results depends on our

ability to distinguish between these the pre-release bug types.

Thus, having two or more variables with heavy correlation will

increase the comparison difficulty of the next analysis steps.

We applied the Spearman correlation coefficient analysis on

our 7 pre-release bug variables looking to remove variables

that present high co-linearity. The results from the Spearman

correlation coefficient indicate that the pre-release bug varia-

bles show a negligible to low correlation with each other.

In Table III we present the maximum Spearman correlation

coefficient of each variable when we run the test against all

273

TABLE II
FILE-LEVEL METRICS COMPUTED PER RELEASE

Metric Description

num-pre-bugs Number of bugs discovered from a year
before the selected release.

num-pre-features Number of bugs labeled as ”type-
feature” discovered from a year before
the selected release.

num-pre-compatibility-bugs Number of bugs labeled as ”type-
compat” discovered from a year before
the selected release.

num-pre-regression-bugs Number of bugs labeled as ”type-bug-
regression” discovered from a year be-
fore the selected release.

num-pre-security-bugs Number of bugs labeled as ”type-bug-
security” discovered from a year before
the selected release.

num-pre-tests-fails-bugs Number of bugs labeled as ”cr-tests-
fails” discovered from a year before the
selected release.

num-pre-stability-bug Number of bugs labeled as ”stability-
crash” discovered from a year before
the selected release.

num-pre-build-bugs Number of bugs labeled as ”build”
discovered from a year before the se-
lected release.

num-post-vulnerabilities Number of vulnerabilities discovered
from a year after the selected release.

becomes-vulnerable Denotes if a module will become vul-
nerable in the future year.

TABLE III
MAXIMUM SPEARMAN RANK CORRELATION COEFFICIENT BETWEEN

PRE-RELEASE BUG VARIABLES PER RELEASE

Metric R5 R11 R19 R27 R35

num-pre-features -0.12 -0.18 -0.23 -0.29 -0.32

num-pre-compatibility-bugs 0.15 0.08 0.08 0.05 0.03

num-pre-regression-bugs 0.19 0.29 0.19 0.13 0.32

num-pre-security-bugs 0.15 0.18 0.15 0.11 0.12

num-pre-tests-fails-bugs 0.05 0.09 0.06 0.04 0.03

num-pre-stability-bugs 0.19 0.29 0.19 0.13 0.13

num-pre-build-bugs -0.12 0.18 0.23 0.29 0.13

other pre-release variables. Even the highest values indicate

low correlations, so we did not see co-linearity that would

interfere with multiple regression.

RQ1. Are source code files fixed for bugs likely to be fixed for
future vulnerabilities?

Motivation. Our goal here is to evaluate, in a broad sense,

if files that have been frequently fixed for bugs also have

a higher probability of being fixed for a vulnerability. This

research question serves as an overall measure of quality and

security, but does not delve into comparing other factors such

as features and security-related bugs (as RQ2 does).

TABLE IV
MWW TEST RESULTS FOR SLOC AND NUM-PRE-BUGS PER RELEASE.
ALL RESULT WERE STATISTICALLY SIGNIFICANT (p− value < 0.05).

Metric Median Vuln. Median Neutral

Release 5.0
SLOC 5.30 4.63

num-pre-bugs 1.95 1.39

Release 11.0
SLOC 5.27 4.26

num-pre-bugs 1.61 1.10

Release 19.0
SLOC 5.31 4.42

num-pre-bugs 1.61 1.39

Release 27.0
SLOC 5.43 4.67

num-pre-bugs 1.79 1.39

Release 35.0
SLOC 5.73 4.76

num-pre-bugs 1.94 1.61

TABLE V
COHEN’S D EFFECT SIZE STATISTIC FOR NUM-PRE-BUGS IN

VULNERABLE AND NEUTRAL POPULATIONS PER RELEASE.

Cohen’s D Cohen’s U3 % Overlap

Release 5.0 0.74 76.92% 71.28%

Release 11.0 0.57 71.55% 77.58%

Release 19.0 0.29 61.23% 88.66%

Release 27.0 0.36 64.24% 85.52%

Release 35.0 0.39 65.02% 84.70%

Analysis. To examine how the pre-release bugs are related

to an increased chance of future vulnerability, we used the

non-parametric Mann-Whitney-Wilcoxon test (MWW) to

examine if a statistically significant correlation exists. We

tested the number of pre-release bugs, separating the popula-

tion in vulnerable and neutral files, and evaluated the becomes

vulnerable hypothesis. To examine the amount of overlap

between neutral and vulnerable files with respect to number

of bugs, We used the Cohen’s D [8] statistic.

The MWW results in Table IV show that in comparison

vulnerable files have a larger median pre-release bug count

than neutral files; this difference is small but constant for all

of our releases. All of our MWW test results were statistically

significant (p < 0.05). We also included in this analysis the

SLOC population to reconfirm finding from related and prior

work that vulnerable files tend to be larger in size than neutral

files.

The Cohen’s D statistic is useful for gauging the strength

of our MWW results by evaluating the amount of overlap

between the vulnerable and neutral populations. This statistic

is computed by comparing the two population means and

factoring in how many of each population are above the other

population’s mean. Our results for Cohen’s D, presented in

Table V, show that the lowest amount of overlap between

vulnerable and the neutral populations with respect to bugs

is 71.28% on Release 5.0. As the project matures, the overall

overlap stays above 75%. The Cohen’s D literature indicates

274

that this overlap is considered to be medium-to-large, indi-

cating that the association is relatively weak. That is, many

neutral files have many bugs and many vulnerable files have

few bugs.

These results indicate that, broadly speaking, files with a

history of bugs are likely to be fixed for vulnerabilities in the

future. However, this association has many counterexamples,

leading to a weak association overall.

RQ2. Are some types of bugs more closely related to vulnera-
bilities than others?

Motivation. From RQ1, we learned that, in aggregate,

a connection between bugs and vulnerabilities exists in

Chromium across multiple releases. However, bugs come in

many different forms. Some bugs can be related to maintaining

compatibility across operating systems, other might be related

to stability problems that could foreshadow future vulnera-

bilities. For example, code with a history bugs related to 32-bit

and 64-bit builds might have integer overflow problems that

become exploitable.

Furthermore, we use this sub-category analysis to gauge the

strength of the connection between bugs and vulnerabilities. In

particular, we use SLOC, features, and security-related bugs

as bases of comparison against non-security bugs.

Thus, our objective in this question is twofold: (a) identify

trends between specific types of bugs and the occurrence of

future vulnerabilities, and (b) compare those types to baselines

of SLOC, security-related bugs, and features.

Analysis. We performed logistic regression analysis to eva-

luate these patterns by comparing the model quality. We based

the model quality in two statistical tests: model goodness
of fit (how well the created model fits the data) and model
performance (how well model is able explain the data). We

must point out, however, that these analyses for to comparing
categories of bugs, not to create an overall vulnerability

prediction model as has been done in other literature [2]–[4],

[18].

To implement this approach first we built a base model

based on SLOC, to serve as the baseline for evaluating

the improvement in model quality that each pre-bug-metrics

produces. Our RQ1 results, as well as other studies [27] have

shown that files with higher SLOC are more likely to be

vulnerable.

We continued this process by performing a forward selection

of the variables, building models adding one pre-release bug

type at a time, we managed to identify 4 groups of pre-release

bug variables that can be represented in logical bug categories

and show model quality improvement over the individual pre-

release bug types. The description of each of these category

groups can be found on Table VI.

Finally we compared the variance on the overall quality of

the output that each category group introduces.

Goodness of fit: These metrics present a way to evaluate

how well a model fits the data when compared to other models,

in our case the base model. In this step we measured: a) The

AIC of each model b) and the D2.

TABLE VI
CATEGORY MODELS BASED ON BUG TYPES

Metric Description

fit-base Our base model based only on SLOC.

fit-num-pre-bugs Based on SLOC + num-pre-bugs.

fit-features Bug category based on SLOC + num-pre-
features.

fit-security Bug category based on SLOC + num-pre-
security-bugs.

fit-stability Bug category based on SLOC + num-pre-
stability-bugs + num-pre-compatibility-bugs +
num-pre-regression-bugs.

fit-build Bug category based on SLOC + num-pre-build-
bugs + num-pre-tests-fails-bugs.

Our results show that adding the pre-release bug metrics

have a positive effect overall on the quality of the models, but

we found this relation to be weak and not constant.

On Release 5.0 and 11.0, the model fit-num-pre-bugs, show

the strongest correlation with improvement of model goodness

of fit.

We also found that fit-security and fit-features present

the stronger positive association when compared to the other

category models on almost all releases, averaging -2.78% and

-0.84% of AIC reduction respectively. One exception to this

trend is Release 27, where the model fit-features is associated

with a lower quality model (increased AIC). While other

category models are also associated with lower AIC, we found

that the improvement is not as significant when compared to

the baseline SLOC model.

In terms of D2 again the category fit-security and cate-

gory fit-features show the strongest correlation averaging

73.47% and 22.66% improvement respectively over the base

model. Reconfirming the trend that among the evaluated bug

categories fit-security and fit-features present the strongest

correlation with chances of vulnerabilities.

The complete result set for the goodness of fit metrics is

shown in Table VII. The models with the best fit are shown in

bold, and represent the strongest association with post-release

vulnerabilities.

Model Performance: In this step we evaluate the variance

in explanatory power that each bug category produces, when

the category models are used to predict the probability of

vulnerabilities and compared against next release data. We

used next-release validation on four releases, meaning that we

used the data from one release to train a model, then apply

that model to the subsequent release. Next-release validation

is particularly helpful because it simulates the data that the

team could have feasibly collected at that time in history.

In our validation, we examining the following statistics:

a) Precision and recall, b) F-measure, c) Area under the ROC

(AUC).

We compare these statistics to the output of the base model.

We present our findings in Table VIII showing the performance

improvement of each model.

275

TABLE VII
GOODNESS OF FIT METRICS FOR PRE-RELEASE OF BUG BASED

CATEGORY MODELS PER RELEASE

Release 5.0
Model AIC AIC DEC D2 D2 INC
fit-base 1424.40 - 0.04 -

fit-num-pre-bugs 1377.40 -3.30% 0.07 86.39%

fit-security 1402.20 -1.56% 0.05 42.68%

fit-features 1423.90 -0.04% 0.04 4.34%

fit-stability 1419.50 -0.34% 0.05 19.25%

fit-build 1423.80 -0.04% 0.04 8.09%

Release 11.0
Model AIC AIC DEC D2 D2 INC
fit-base 3098.40 - 0.08 -

fit-num-pre-bugs 3093.00 -0.17% 0.08 2.69%

fit-security 3095.90 -0.08% 0.08 1.65%

fit-features 3071.10 -0.88% 0.09 10.73%

fit-stability 3090.50 -0.25% 0.09 5.08%

fit-build 3099.20 0.03% 0.08 1.15%

Release 19.0
Model AIC AIC DEC D2 D2 INC
fit-base 2365.60 - 0.04 -

fit-num-pre-bugs 2367.00 0.06% 0.04 0.60%

fit-security 2358.60 -0.30% 0.05 8.50%

fit-features 2337.90 -1.17% 0.05 28.06%

fit-stability 2361.30 -0.18% 0.05 9.75%

fit-build 2350.10 -0.66% 0.05 18.41%

Release 27.0
Model AIC AIC DEC D2 D2 INC
fit-base 2432.50 - 0.04 -

fit-num-pre-bugs 2434.40 0.08% 0.04 0.02%

fit-security 2286.10 -6.02% 0.10 134.10%

fit-features 2434.10 0.07% 0.04 0.34%

fit-stability 2427.50 -0.21% 0.05 9.88%

fit-build 2421.90 -0.44% 0.05 13.11%

Release 35.0
Model AIC AIC DEC D2 D2 INC
fit-base 1038.20 - 0.03 -

fit-num-pre-bugs 1040 0.17% 0.03 0.47%

fit-security 976.42 -5.95% 0.09 180.41%

fit-features 1015.50 -2.19% 0.06 69.82%

fit-stability 1038.70 0.05% 0.04 15.50%

fit-build 1038.70 0.05% 0.04 25.01%

TABLE VIII
PERFORMANCE METRICS FOR PRE-RELEASE BUG BASED CATEGORY

MODEL PER RELEASE

Release 11.0

Model Precision Recall F-measure AUC

fit-base 0.29 0.35 0.32 70.89%

fit-num-pre-bugs 0.24 0.49 0.32 66.63%

fit-security 0.28 0.34 0.31 70.41%

fit-features 0.25 0.50 0.33 71.97%

fit-stability 0.26 0.41 0.32 69.92%

fit-build 0.25 0.48 0.33 70.86%

Release 19.0

Model Precision Recall F-measure AUC

fit-base 0.11 0.31 0.16 66.84%

fit-num-pre-bugs 0.09 0.48 0.15 66.12%

fit-security 0.11 0.34 0.17 67.06%

fit-features 0.10 0.46 0.16 68.77%

fit-stability 0.09 0.41 0.15 66.40%

fit-build 0.09 0.44 0.16 67.61%

Release 27.0

Model Precision Recall F-measure AUC

fit-base 0.11 0.32 0.16 66.48%

fit-num-pre-bugs 0.07 0.51 0.13 66.57%

fit-security 0.15 0.40 0.21 70.03%

fit-features 0.07 0.50 0.11 65.54%

fit-stability 0.08 0.46 0.13 66.35%

fit-build 0.08 0.48 0.14 68.42%

Release 35.0

Model Precision Recall F-measure AUC

fit-base 0.04 0.35 0.07 66.50%

fit-num-pre-bugs 0.03 0.54 0.05 66.48%

fit-security 0.06 0.51 0.10 75.34%

fit-features 0.03 0.47 0.06 67.31%

fit-stability 0.03 0.45 0.06 65.90%

fit-build 0.03 0.45 0.06 67.41%

276

In these results we notice that the category model fit-
security is associated with improvement of the precision in 3

out of 4 evaluated releases. The category model fit-num-pre-
bugs is associated with an increase in the recall measurement

in in 3 out of 4 evaluated releases. The results show that again

fit-security is associated with an improvement in F-measure.

In terms of AUC we found that the models fit-security and

fit-features have a stronger positive relation than the other

models.

Results Interpretation: Summarizing the results from both

aspects “model goodness fit” and “model performance” we

notice that, when compared to baselines of features, SLOC,

and security bugs, traditional non-security bugs have a positive

but weak association with vulnerabilities. Among the results,

the strongest positive correlation with overall model quality

was found in the variables pre-release feature bugs and pre-

release security bugs. But even with this existing association,

the improvement over our baseline model is very small and

the overall predictive power is relatively small compared to

the literature [3], [12], [27], [28].

This result is particularly interesting given that several sub-

categories of bugs are related to security properties. System

stability is key to providing availability (i.e. preventing denial-

of-service attacks), so one might assume that stability prob-

lems in a file’s past may lead to vulnerability problems in the

future, but this effect was small.

This weak association indicate that bugs and vulnerabilities

are empirically dissimilar groups. And it can be tough call

to identify future vulnerabilities based solely on the pre-

release bug history. We advice to include other vulnerability

identification patterns where needed [28].

RQ3. Do the source code files with the most bugs also have
the most vulnerabilities?

Motivation. In this question, we want to simulate how

bugs could be used in practice. Consider the situation of a

last-minute security audit where we have limited resources to

perform a thorough code inspection. If we used the concept of

“bugginess” as our only guide to prioritize those inspections,

how well will that guide work at inspecting the files that would

later need to be fixed for vulnerabilities?

Analysis. To examine this question, we present a lift curve
for each release demonstrating how many vulnerabilities exist

in the top-ranked files by defect density. Figure 3 shows these

results by release. As an example interpretation of the charts,

in Release 11.0, 60% of the post-release vulnerabilities can be

found in the top 30% of the buggiest files. While this ranking is

better than random (i.e. roughly a diagonal line), the prediction

capabilities of defect density is significantly worse than what

is found in the vulnerability prediction literature [27], [28].

Consider also these results in a scenario. Suppose we are

only able to inspect 20 files that are non-trivial, say 25 lines

of code or more. (While these numbers are arbitrary, we chose

them as reasonable simulations of a rushed security audit.) If

we rank the files at each release as by defect density (i.e. num-

pre-bugs / SLOC), then those files would, at best, contain 1.4%

Fig. 3. Lift curves of % vulnerabilities found when ranked by num-pre-bugs
shows a weak association

of the vulnerabilities. An optimal top-20 file ranking would

account for an average of 12% of vulnerabilities, so ranking

by defect density is far from optimal.

The results above show that the buggiest files have some

(but not many) vulnerabilities. The situation gets worse, how-

ever, when we examine the question from the other direction:

ranking by files with the most vulnerabilities per SLOC. In

that situation, across the five releases, none of the Top 20 files

277

with the most vulnerabilities per SLOC appear in the Top 20

of the buggiest files.

VII. THREATS TO VALIDITY

We chose the Chromium project as a large, open source

project to be representative of many large software projects.

But, as with any empirical study, these results may be specific

to the Chromium project. Labels such as the ones we used

were based on our own investigation of Chromium, and may

not generalize to other project (e.g. different development

teams may define “stability bugs” differently).

By presenting the variance in the model fitness and per-

formance metrics, we caution the reader about the overall

predictability of vulnerabilities. Other studies (even our own

[27]) have shown prediction models of vulnerabilities that

outperform the models here. The multiple regression models

are formed as a comparison of multiple groups of metrics.

We compared the quality of the models from one release

with data of the next release. It is also possible to combine

models from multiple releases to identify bug patterns that take

more time to reveal its effects on vulnerabilities. We could for

example average the prediction results of Release 5.0, 11.0,

19.0 and 27.0 to evaluate the probability of vulnerabilities

in Release 35.0. However we postpone this investigation for

future work.

VIII. SUMMARY

In this study we evaluated the correlation between pre-

release bugs and post-release vulnerabilities on the Chromium

project. The results show that, while an empirical connection

between bugs and vulnerabilities exist, the connection is

considerably weak. The strongest indicators of vulnerability

are past security-related bugs and new features - neither of

which are non-security bugs. Furthermore, the buggiest files

do not intersect with the files with many vulnerabilities. This

evidence underscores the conceptual difference between bugs

and vulnerabilities, and indicates that additional empirical

research must be directed at vulnerability data specifically.

ACKNOWLEDGMENTS

This research is supported by the National Science Foun-

dation (grant CCF-1441444). Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation. We thank the Software

Archeology group at RIT for their valuable contributions to

this work.

REFERENCES

[1] I. V. Krsul, “Software vulnerability analysis,” Ph.D. dissertation, Purdue
University, 1998.

[2] T.-H. Chen, S. Thomas, M. Nagappan, and A. Hassan, “Explaining
software defects using topic models,” in Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on, June 2012, pp. 189–198.

[3] M. Gegick, P. Rotella, and L. Williams, “Predicting attack-prone com-
ponents,” in Software Testing Verification and Validation, 2009. ICST
’09. International Conference on, April 2009, pp. 181–190.

[4] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis, “An empirical investigation
of socio-technical code review metrics and security vulnerabilities,”
in Proceedings of the 6th International Workshop on Social Software
Engineering, ser. SSE 2014. New York, NY, USA: ACM, 2014, pp. 37–
44. [Online]. Available: http://doi.acm.org/10.1145/2661685.2661687

[5] D. Tegarden, S. Sheetz, and D. Monarchi, “Effectiveness of traditional
software metrics for object-oriented systems,” in System Sciences, 1992.
Proceedings of the Twenty-Fifth Hawaii International Conference on,
vol. iv, Jan 1992, pp. 359–368 vol.4.

[6] M. Mukaka, “A guide to appropriate use of correlation coefficient in
medical research,” Malawi Medical Journal, vol. 24, no. 3, pp. 69–71,
2012.

[7] N. F. Schneidewind, “Methodology for validating software metrics,”
Software Engineering, IEEE Transactions on, vol. 18, no. 5, pp. 410–
422, 1992.

[8] J. Cohen, Statistical power analysis for the behavioral sciences. Aca-
demic press, 2013.

[9] J. Ruscio, “A probability-based measure of effect size: Robustness to
base rates and other factors.” Psychological Methods, vol. 13, no. 1,
p. 19, 2008.

[10] K. K. Zakzanis, “Statistics to tell the truth, the whole truth, and nothing
but the truth: formulae, illustrative numerical examples, and heuristic
interpretation of effect size analyses for neuropsychological researchers,”
Archives of clinical neuropsychology, vol. 16, no. 7, pp. 653–667, 2001.

[11] J. Cohen, “Statistical power analysis,” Current directions in psycholog-
ical science, pp. 98–101, 1992.

[12] A. Cruz and K. Ochimizu, “Towards logistic regression models for pre-
dicting fault-prone code across software projects,” in Empirical Software
Engineering and Measurement, 2009. ESEM 2009. 3rd International
Symposium on, Oct 2009, pp. 460–463.

[13] A. E. Raftery, “Bayesian model selection in social research,” Sociolog-
ical methodology, vol. 25, pp. 111–164, 1995.

[14] K. P. Burnham and D. R. Anderson, “Multimodel inference understand-
ing aic and bic in model selection,” Sociological methods & research,
vol. 33, no. 2, pp. 261–304, 2004.

[15] A. Guisan and N. E. Zimmermann, “Predictive habitat distribution
models in ecology,” Ecological modelling, vol. 135, no. 2, pp. 147–186,
2000.

[16] T. Y. Chen, F.-C. Kuo, and R. Merkel, “On the statistical properties
of the f-measure,” in Quality Software, 2004. QSIC 2004. Proceedings.
Fourth International Conference on, Sept 2004, pp. 146–153.

[17] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing software
security fortification throughcode-level metrics,” in Proceedings of the
4th ACM workshop on Quality of protection. ACM, 2008, pp. 31–38.

[18] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, “High-
impact defects: a study of breakage and surprise defects,” in Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ACM, 2011, pp.
300–310.

[19] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and
D. Spinellis, “Dismal code: Studying the evolution of security
bugs,” in Proceedings of the LASER 2013 (LASER 2013).
Arlington, VA: USENIX, 2013, pp. 37–48. [Online]. Available:
https://www.usenix.org/laser2013/program/mitropoulos

[20] D. Mitropoulos, G. Gousios, and D. Spinellis, “Measuring the occur-
rence of security-related bugs through software evolution,” in Informat-
ics (PCI), 2012 16th Panhellenic Conference on, Oct 2012, pp. 117–122.

[21] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. ichi
Matsumoto, “The impact of mislabelling on the performance and inter-
pretation of defect prediction models,” in Proc. of the 37th Int’l Conf.
on Software Engineering (ICSE), 2015, p. To appear.

[22] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on, March 2011, pp. 5–14.

[23] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P. Devanbu,
“The promises and perils of mining git,” in Mining Software Reposito-
ries, 2009. MSR ’09. 6th IEEE International Working Conference on,
May 2009, pp. 1–10.

[24] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on. IEEE, 2003, pp. 23–32.

278

[25] D. Behl, S. Handa, and A. Arora, “A bug mining tool to identify and
analyze security bugs using naive bayes and tf-idf,” in Optimization,
Reliabilty, and Information Technology (ICROIT), 2014 International
Conference on, Feb 2014, pp. 294–299.

[26] A. Meneely, H. Srinivasan, A. Musa, A. Rodriguez Tejeda, M. Mokary,
and B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in Empirical Software Engineering
and Measurement, 2013 ACM / IEEE International Symposium on, Oct
2013, pp. 65–74.

[27] Y. Shin, A. Meneely, L. Williams, and J. Osborne, “Evaluating complex-
ity, code churn, and developer activity metrics as indicators of software
vulnerabilities,” Software Engineering, IEEE Transactions on, vol. 37,
no. 6, pp. 772–787, Nov 2011.

[28] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007,
pp. 529–540.

279

