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ABSTRACT
Even the addition of a single extra field or control state-
ment in the source code of a large-scale software system
can lead to performance regressions. Such regressions can
considerably degrade the user experience. Working closely
with the members of a performance engineering team, we
observe that they face a major challenge in identifying the
cause of a performance regression given the large number of
performance counters (e.g., memory and CPU usage) that
must be analyzed. We propose the mining of a regression-
causes repository (where the results of performance tests
and causes of past regressions are stored) to assist the per-
formance team in identifying the regression-cause of a newly-
identified regression. We evaluate our approach on an open-
source system, and the commercial system for which the
team is responsible. The results show that our approach
can accurately (up to 80% accuracy) identify performance
regression-causes using a reasonably small number of his-
torical test runs (sometimes as few as four test runs per
regression-cause).

Categories and Subject Descriptors
D.2 [Software/Program Verification]: Statistical meth-
ods; C.4 [Performance of Systems]: Measurement tech-
niques; H.3 [Systems and Software]: Performance evalu-
ation (e�ciency and e↵ectiveness)

General Terms
Performance, verification

Keywords
Control charts, load testing, performance testing, perfor-
mance regression

1. INTRODUCTION
Performance is an important aspect of large software sys-

tems since a large number of field problems are performance
related [1]. Performance problems have serious implications
on the profitability of a business. For instance, web users are
likely to abandon a transaction after a ten second wait [2].

A new version is said to have a performance regression
when it o↵ers a worse user experience (e.g., longer response
time), or consumes additional resources (e.g., more CPU or
memory usage) while possibly maintaining the same user
experience. While in some cases, one can bring in addi-
tional hardware infrastructure to o↵set the regression, such
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solutions are not economical and are often not feasible (espe-
cially for very large scale deployments). Hence, performance
engineers conduct performance tests prior to the deployment
of every new version to detect performance regressions.

Once a performance regression is detected, the perfor-
mance team must provide guidance to the development team
as to what are the possible causes (e.g., added fields in a
long-living object). Developers use such guidance to nar-
row down their investigation to the o↵ending change(s). In
an ideal setting, performance tests would be run after each
checkin so the causes of regressions could be easily mapped
to the very specific checkins (i.e., code change). However,
given the complexity of performance tests (e.g., requiring
large lab setups, complex manual configurations, and lengthy
executions times), per-checkin performance tests are rarely
feasible in a large scale industrial setting. Instead perfor-
mance tests are conducted across versions which often con-
tain a large number of changes. Hence determining the cause
of an identified regression (which we call as a regression-
cause in the rest of the paper) is often a very time consum-
ing e↵ort – requiring hours or even days, depending on the
experience of the engineers, the complexity of the system,
and the performance regression itself.

Working with a performance engineering team, we inves-
tigate the use of mining software repositories approaches to
automate the process of identifying regression-causes. We
mined a repository of performance regression-causes. The
repository contains the results of prior large-scale perfor-
mance tests (along with associated performance counter data),
as well as the verified regression-cause. Our approach matches
the behaviour of a new version (through the performance
counters) to the behaviour of prior tests runs where a per-
formance regression has occurred, in order to determine the
regression cause in the new version.

Given the confidential nature of the commercial system,
we evaluate our approach using the popular open-source Dell
DVD store software and the aforementioned large commer-
cial system. Using the two case studies, we answer the fol-
lowing research questions:

• RQ1: How accurate is our approach? We find
that in 74%-80% of the cases, the regression-cause iden-
tified by our approach was indeed the actual cause.

• RQ2: How much training data is required? Since
the number of historical performance regressions might
be limited, we examine the amount of training data
required by our approach. We find that, even though
having more training data improves the accuracy of
our approach, we can get high accuracy with as little
as four runs per regression-cause.

The contributions of this study are:
• Through a preliminary field study on a large scale com-

mercial system, we find that 83% of the regressions can
be attributed to just four common regression-causes.
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Figure 1: The performance engineering team’s workflow for regression testing

• We propose and evaluate an approach, which can au-
tomatically determine if the regression-cause of a new
performance test matches one of the known causes.

The paper is organized as follows. Section 2 introduces the
background which motivates our approach for identifying
the regression-causes. Section 3 explains the details of our
approach. Section 4 introduces the two case studies used to
evaluate our approach. Section 5 presents the results for our
two research questions. Section 6 discusses the applications
of our approach in an industrial setting and the feedback
we got from the performance engineers. Section 7 discusses
related work. Finally, Section 8 concludes the paper.

2. CASE STUDY AND BACKGROUND
In this section, we introduce our industrial case study and

the background information on performance testing.

2.1 Industrial Setting
We study a performance testing team of a commercial

company. The software system, for which the team is re-
sponsible, is a high performance and high availability sys-
tem that is deployed on several thousand nodes each, across
several data centres around the globe. The software services
millions of users worldwide.

2.2 Performance Regression Testing
The goal of performance regression testing is to ensure

that performance of the system remains at an acceptable
level under field-like load. During the software’s life cycle,
every change to the source code might degrade the software
performance by consuming more resources. This situation
is called a performance regression. To ensure that the user
experience is not compromised, performance engineers con-
duct performance tests for each new software version.

Figure 1 shows the typical steps of performance regression
testing – a black-box testing process. Step 1 applies field-like
load to both the old version and new version of the software
on the same field-like hardware. This step is usually done by
load generation tools such as HP’s Load Runner or Apache’s
JMeter. During the test runs, performance counters such as
CPU or memory utilization are collected. Then, in Step 2,
the two sets of counters, which are called baseline for the
old version and target for the new version, are analyzed.

The performance of a software system depends on two fac-
tors. The software itself and the hardware on which it runs.
If there is a regression, e.g., the software uses more CPU
than before, the performance team works closely with de-
velopers to identify the cause and understand the rationale.
If the rationale is not justified, the developers will need to
make changes to the software to eliminate the regression. If
the rationale is justified, then additional hardware would be
provisioned to o↵set the observed regression.

2.3 Analyzing a Performance Regression Test
In Step 2 of Figure 1, the performance engineers need to

analyze the performance counters to:
• Determine if there is a performance regression
• Identify the regression-cause
We study the performance regressions, which the team

reported in a period of one year to understand the typical
outputs of Step 2 in Figure 1. With the help of the engineers,
we analyze the content of bug reports using an approach
similar to Jin et. al. [3], where bug reports were manually
analyzed and grouped into di↵erent types of causes.

Table 1 shows a breakdown of the various causes of regres-
sions over a year (only the percentage is shown for confiden-
tiality reason). We name the regression-causes according
the wording in the bug reports. However, these regression-
causes are widely used in practice under similar names. Alt-
man et. al. [4] also report similar regression-causes, e.g.,
Memory Leak, Database Bottleneck, or Disk I/O.

As we can see, four of the regression-causes can explain
82.94% of regression problems over a year. Only for 17% of
the identified performance regressions, no regression-cause
was identified. Such cases are common since not all per-
formance metrics are exposed. These cases usually require
extensive debugging.

We interviewed the performance engineers responsible for
the industrial software system, to understand these regression-
causes. The engineers noted that the same regression-cause
in di↵erent parts of the code will result in similar values for
the performance counters (i.e. signature) as long as the re-
gression causing code is inserted anywhere along the same
execution path. However, if the regression-cause is inserted
along other execution paths, it likely won’t result in the
same signature. For example, take a typical e-commerce
application. Adding a regression-cause in di↵erent parts of
the execution path that deals with the checkout process will
lead to a common counter signature. However, adding the
same regression-cause in the execution path responsible for
the registration process will lead to a di↵erent counter sig-
nature. Given the large size of the code base and the team,
they found that the insertion of the same regression-cause
along the same path tends to occur often in their system.

Table 1: Typical output of Step 2 in Figure 1
Regression-cause %
Added frequently executed DB query or miss
matched DB indices

30.54%

Added frequently executed logic 16.67%
Added frequently accessed fields and objects 30.18%
Added blocking I/O access: 5.55%
Symptom of regression is detected (e.g., response
time increased) but no regression-cause can be
determined.

16.67%



2.4 The Challenge of Analyzing the Results of
Performance Tests

Unfortunately, identifying the regression-cause is not a
simple task because:

• There are a large amount of counters. Apart from
the standard counters in the OS’s monitoring system,
specific counters are also added to common trouble
spots. Sometimes, profilers are also used as a fast way
to create specific performance counters. Both result in
thousands of counters to be analyzed for each test run.

• Most performance regression problems involve a com-
bination of counters. For example, if a database index
is missing, both the CPU utilization and memory are
likely to increase. Hence looking at just one counter
would not be su�cient.

• A regression in a component is very likely to impact
the performance of other components. For example,
if the database slows down, the front end will have to
wait more for queries to return. Hence, the front end
will use less CPU.

Yet, the analysis is usually done manually – a very time
consuming and error-prone process [5]. To analyze this mas-
sive amount of counter data, performance engineers usually
have to rely on experience to select a subset of counters to
manually compare. It can take several hours or even days
to analyze each performance test.

3. APPROACH
Leveraging our prior experience with mining software repo-

sitories, we believe that if the regression test results are kept
in a repository, we can leverage information from prior tests
when analyzing a new test run. Figure 3 shows an overview
of our proposed approach which replaces the manual analy-
sis in Step 2 (Figure 1). However, we first need to explain
the two conceptual steps of our approach:

• Step A - Data reduction: We reduce the counter
data into a smaller set of data using a statistical control
technique called control charts. Thus a simpler and
easier to understand performance counter dataset is
created to be used in the next step of our approach.

• Step B - Detect regression and identify regres-
sion-cause: Using machine learning techniques, we
match the regression-cause of the current test run with
the regression-cause of historical runs. One of the
regression-cause is “Normal”, which means there is no
regression. So we can say a) whether regression hap-
pened and b) what is the probable cause of the regres-
sion.

Step A: Data Reduction Using Control Charts
Goal: Data reduction is essential when analyzing a large
number of counters (usually 2-3 thousand counters). Prior
studies employ techniques such as principle component anal-
ysis [6, 7], projection pursuit [8], or normalized mutual infor-
mation [9] for data reduction. However, these techniques pri-
marily fuse the counters together creating new index coun-
ters that are often hard to map back to intuitive concepts.

Control charts: Control charts are a common tool in
statistical quality control [10]. They are used to detect prob-
lems in manufacturing processes where raw materials are
inputs and the completed products are outputs. A control
chart outputs a measurement index, called violation ratio,
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Figure 2: Examples of control chart which detect deviation
in process output (performance counters in this case).

which indicates the amount of deviance of the current state
of the process compared to the norm.

Figure 2(a) and 2(b) show two example control charts.
The x-axis is time, e.g., minutes. The y-axis is the counter
values. In this example, we are monitoring the CPU usage.

A control chart is typically built using two datasets: a
baseline dataset and a target dataset. The baseline dataset
is used to create the control limits. The Upper Control Limit
and the Lower Control Limit are the two solid lines which
represents the 90th and the 10th percentile. The dashed
line in the middle is the Centre Line which represents the
median, or the 50th percentile, of the baseline dataset. The
target dataset, which are the crosses, is used to score the
violation ratios on the chart. The violation ratio is the per-
centage of target dataset values that are outside the control
limits. The violation ratio represents the degree to which
the current operation is out-of-control. The thresholds for
violation ratios are determined by the performance engineer
based on their experience.

Figure 2(a) is an example where the CPU utilization is
within its control limits. This should be the normal oper-
ation of the server. Figure 2(b), on the other hand, is an
example where the CPU utilization (process output data) is
out-of-control. In this case, operators should be alerted for
further investigation.

Reducing performance counter data using control
charts: In a performance test run, we have two sets of
data, which are the old version’s test data (the baseline) and
the new version’s test data (the target) (Figure 1). Control
charts reduce, as explained above, the counters of the base-
line and target tests into violation ratios for each counter.
To be more precise, control charts can output two violation
ratios for each counter: upper violation ratio and lower vio-
lation ratio. The upper violation ratio is the ratio of dataset
values that are higher than the upper control limit. The
lower violation ratio is the ratio of dataset values that are
lower than the lower control limit. The collection of violation
ratios of all the counters for each test run is the performance
counter dataset of that test run.

This reduction does not compromise the explanatory power
of the reduced data for a specific counter. Working with the
performance engineers, we found that they are more com-
fortable to adopt approaches, like control charts, since they
are easy to understand and explain [11, 12]. If the violation
ratio of a counter is high, it means that the new target test
behaves di↵erently from the baseline test for that counter.
If the violation ratio for a counter is low, it means that the
new target test behaves the same as the baseline test for
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Figure 3: Our proposed approach for determining the regression-cause, which replaces the manual analysis of performance
counters (Step 2 of Figure 1).

that counter. So even if we are not using the violation ra-
tios in the analysis step of performance regressions, which
we will explain in the next subsection, the engineer can still
make sense of the reduced data. If we use other data reduc-
tion technique such as principle component analysis [6, 7],
we would still achieve reduction. However, it would be very
di�cult to make sense of the reduced data since the counters
are combined into principle components.

Step B: Detecting the Regression Types Using
Machine Learners
Goal: After Step A, the data for analysis is similar to the
example in Table 2. Each row represents a test run (with
relation to its baseline test run). Each column is the viola-
tion ratio of the corresponding counter when comparing the
target run against its baseline run. We have one column for
each counter of every component of the software. For ex-
ample, if we have 15 components and each component has
36 counters (the standard counters that Microsoft Windows
collects for a process), we will have 15 ⇤ 36 = 540 columns.

The top part of Table 2 are the historical tests which are
stored in a repository. The last column shows the identified
cause of the performance regression in that run. If there is
no regression, the regression-cause would be G (‘Normal’).
If there is a performance regression, the verified regression-
cause is recorded. For example, in the first row, there is no
performance regression, so the regression-cause is ‘Normal’.
In the second row, there is a performance regression due to
adding code to a frequently accessed logic, so the regression-
cause is recorded as ‘Added hot code’ (See Section 4 for a
detailed explanation of the various regression-causes).

The last row of Table 2 is the new test run, which cor-
responds to the new version, and hence has an “unidenti-
fied” regression-cause (denoted as a ‘?’). To identify the
regression-cause (if a regression has occurred) of this new
test, an engineer would have to match the characteristics of

Table 2: Example of data used in the machine learning of
Step B. Co.X = Component X, and VR = Violation Ratio

Data Co.1
CPU
VR

Co.2
Mem
VR

Co.3
Net
VR

... Co.n
VR

Regression-
Cause
(Sec. 4.1)

In
re
p
os
it
or
y

3% 5% 6% ... ... G
14% 0% 3% ... ... B
13% 2% 5% ... ... B
3% 23% 4% ... ... A
3% 4% 2% ... ... G
... ... ... ... ... ...

New X
1

X
2

X
3

... Xn ?

the performance counters of this new test with the perfor-
mance counters of all prior tests. In simple cases, only a
few counters of a component will have high violation ratios.
This means that the regression is isolated to that compo-
nent. It would be easy to identify the regression-cause. As
we mentioned in the previous section, because the compo-
nents are dependent on each other, a regression in one com-
ponent will also a↵ect other connected components. In such
a case, many of the counters would have high violation ra-
tios therefore the engineer must spend considerable time to
isolate the regression-cause using his/her experience. Our
motivation is to introduce machine learners to mimic the
experience of the engineers.

Identifying the causes of performance regressions:
The matching of the current test to previous tests can be
done using machine leaners such as Naive Bayes Classi-
fier [13], J48 Decision Trees [14], or Multi-Layer Percep-
tron [15]. We train the learners using the data (violation
ratios of performance counters and the identified regression-
causes) from prior performance test runs. Then, we use the
trained learners to identify the regression-cause of the new
test run (for which we have the violation ratios of the per-
formance counters).

Figure 3 shows our proposed approach which replaces the
manual analysis in Step 2 of Figure 1. (Step 2a) We score
the violation ratios using the new test data and the previous
test data (the baseline) as explained in Step A. (Step 2b)
Then we use the prior tests in the repository with known
regression-causes to train a machine learner. (Step 2c)
We use the machine learner to suggest the regression-cause
of the new test run. (Step 2d) At this point, the engi-
neer can confirm the identified regression-cause. If identi-
fied regression-cause is correct, the engineer can then file
the defect report and communicate with the right develop-
ment team for further investigation. (Step 2e) Once the
correct regression-cause is identified, we add the test data
as well as the regression-cause into the repository so that we
can use it for future tests.

The regression-causes can be as simple as “Added hot
code”. Or they can be more complex such as “Added hot
code into X component” or even “Added hot code into X
component in thread pool A”. The only requirement is that
there must be enough prior tests with the same regression-
causes. The number of tests required for each regression-
cause is explored in Section 5.2. We can start with sim-
pler/more generic regression-causes. Then as the number of
tests increases, we can create a more detailed coding system
for more specific regression-causes.



4. CASE STUDY SETUP
4.1 Performance Regression Injection

To evaluate our approach (Figure 3), we apply the ap-
proach on the commercial software (Commercial) whose per-
formance team we are studying. We also apply the approach
on an open source software, the Dell DVD store (DS), be-
cause we have limited disclosure on the Commercial case
study. DS was used in many prior studies on software per-
formance [5, 16].

In both case studies, we introduce six types of changes
to the source code, each of which causes performance re-
gressions (i.e., regression-causes). These regression-causes
include those that are identified in Section 2.3 (in the future
additional regression-causes can be added and explored – we
limit our regression-causes to ones that the engineers noted
to be frequently occurring based on their experience):
(A) Added fields in long living objects: Causes memory

usage increase. If a field is added to an object, and
that object is created many times by the application,
then even though the additional memory foot print of
a field is small, the multiple instantiations can cause a
large increase in memory usage.

(B) Adding frequently executed logic: Causes a CPU usage
increase. Even a small set of additional calculations
added to a part of the source code which is executed
frequently can cause an increase in CPU usage.

(C) Added frequently executed DB query: Causes increased
DB requests. In large software systems, each database
can connect to hundreds of nodes. Each node processes
millions of requests per minute. If a request performs
one more database query than before, then the number
of querying requests on the database would increase
sharply.

(D) Mismatched DB indices: Missing column indices in the
DB – causing longer DB requests. Necessary indices
are required for frequently-executed queries. However,
the necessity is dependant on the actual load. Hence
this kind of regression is only discovered in a perfor-
mance test.

(E) Mismatched text indices: Missing text indexes. This is
similar to (D) but with respect to text indices, which
are required if text searches are performed on a column
of the DB.

(F) Added blocking I/O access: Causes more and/or longer
I/O access time. Accessing I/O storage devices, such
as hard drives, are usually the slowest part of a trans-
action. Changes that add more I/O operation into
a transaction usually causes performance regression if
the transaction is executed frequently. For example,
adding unnecessary log statements is a common mis-
take [17]. Log statements are usually required when
implementing a new feature. There is a tendency to
leave the logging statements behind in the source code
when the change is finished. Unfortunately, if the log
statements are part of a frequently accessed source
code area, there will be a lot more log lines added
in the log file, which can cause an increase in I/O.

(G) Normal: No regression. This is the case where there is
no performance regression. The new test run performs
as good as the previous test run.

For the Commercial case study, we inject issues corre-
sponding to the first four regression-causes (A, B, C and
D). Regression-cause E is not applicable since there is no

text search in all transactions. We could not implement
regression-cause F without altering the functioning of the
software, which we want to avoid. For each cause, we in-
ject the actual problem (change in source code) in six dif-
ferent parts of the source code. Every one of these six dif-
ferent parts of the code lies in the same execution path for
an end user action, like say the checkout process in an e-
commerce application (refer to the discussion at the end of
Section 2.3). We conduct a test run for each code location
of each regression-cause. For each of these test runs that
will cause a performance regression, we calculate the viola-
tion ratios using the counters of that run and the counters
of a normal run. We also calculate the violation ratio of the
normal runs (G) by scoring their counters against another
normal run. Thus, we will have the performance counter
data (violation ratios) of all 30 test runs: six each, for the
normal case and the four regression-causes.

For the DS case study, we use the runs with performance
regression of the five regression-causes (A, B, D, E, and F),
by injecting the issues into six di↵erent areas of the JSP
code. For regression-causes D and E we also had to change
the database configuration, to cause a performance regres-
sion. For regression-cause F, the logging library was config-
ured to write directly to disk, so that a performance regres-
sion with blocking I/O occurs. Normally, most production
logging systems use asynchronous I/O instead, which does
not cause a blocking I/O regression. For regression-causes
A, B, and E, we introduce the problems in two di↵erent ex-
ecution paths of the software. For example, A1 is adding
fields in long living objects on the execution path for the
searching transaction. A2 is adding fields in long living ob-
jects on the execution path for the ordering transaction. We
tag A1 and A2 as two di↵erent regression-causes, because
they are on two di↵erent execution paths from two di↵erent
transactions, each of which has a di↵erent performance pro-
file. Then, for each code location of each regression-cause,
we conduct a test run. We calculate the violation ratios of
each run by scoring that run against the ‘Normal’ runs (G),
which we also run six times. We also calculate the violation
ratios for the normal runs by scoring that run over the other
normal runs. At the end, we have a table with 54 rows of
violation ratios for the nine di↵erent causes (six test runs
each, for the normal case, and eight problems - A1, A2, B1,
B2, D, E1, E2, and F).

In both case studies, we collect only the standard counters
from the OS’s monitoring infrastructure, which produces
about 32 counters per process, for each test run. Then,
we calculate the violation ratios using that run as the tar-
get and one of the ‘Normal’ regression-cause runs (G) as the
baseline. As a result, we have a table for each case study
that is similar to the example in Table 2. We use these two
tables for the analysis.

5. RESULTS
5.1 RQ1: How Accurate is our Approach?
5.1.1 Approach

We use learners from the Weka data mining software. We
use learners that accept numeric independent variables (since
violation ratios of counters are numeric) and a categorical
dependent variable (identified regression-cause) as inputs to
determine the learner with the best accuracy. If the learner
can take our inputs, we use it for our approach. We found
17 such learners in Weka. Table 3 lists all the used learners.



For evaluation, we perform a leave-one-out evaluation for
both case studies (Section 4)). We first pick one random
test run out of all the runs of all the regression-causes. The
rest of the runs are used for training the learner. Then, a
learner is used to suggest the regression-cause of this test
run, by finding the closest matching regression-cause of all
the other test runs that were used as training data. Since
regression-causes are known for each test run, we compare
the suggested and the actual to evaluate the accuracy. If
they match, then it is a success. For example, if the test
run’s actual regression-cause is “Normal”, meaning no re-
gression, and if the suggested regression-cause is also “Nor-
mal”, then it is a successful identification. Otherwise, it is
a failure. For example, if the suggested cause is “Adding
hot code”, then it is a failed identification. We repeat this
procedure for all test runs.

For each learner, we report the accuracy as a percentage.
Equation (1) defines the accuracy measure [29] used in our
study:

Accuracy =
|Success|

|N | (1)

In (1), Sucess is the number of test runs where the pre-
diction of the learner matches the actual regression-cause.
N is the total number of runs. A high accuracy means our
approach can reliably suggest the correct regression-cause to
the performance engineers, thus potentially saving time.

We also report the gain in overall accuracy [29] over a
random predictor, which is defined in Equation (2):

Gain =
Accuracy

r
(2)

In (2), r is the accuracy [29] of the random predictor,
which is defined in Equation (3):

r = 100 ⇤
|Regression-Causes|X

i=1

(
|Runs for regression-causei|

N
)2

(3)

Table 3: Success rates of di↵erent learners for identifying
performance regression-causes using violation ratios (RQ1).
Machine
learners

Class Comm. DS L
.G

.

C
.G

.A. G. A. G.

Random r
(Eq.(3))

20% 0 11% 0

J48 [14] D.Tree 80%4.00 56% 4.95 4.48

4.60
LMT [18] D.Tree 57% 2.83 67% 5.94 4.39
R.Forest [19] D.Tree 70% 3.50 72% 6.48 4.99
R.Tree [20] D.Tree 67% 3.33 64% 5.76 4.55
N.Bayes [13] Bayes 53% 2.67 62% 5.58 4.12

4.39N.Bayes Mul. Bayes 63% 3.17 68% 6.12 4.64
BayesNet Bayes 70% 3.50 59% 5.31 4.41
Dec.Tab. [21] Rule 60% 3.00 39% 3.42 3.21

3.70JRip [22] Rule 47% 2.33 57% 5.13 3.73
PART [23] Rule 77% 3.83 50% 4.50 4.17
IBk [24] Lazy 63% 3.17 63% 5.58 4.37

3.82KStar [25] Lazy 63% 3.17 63% 5.58 4.37
LWL [26] Lazy 53% 2.67 31% 2.79 2.73
Logistic [27] Reg. 57% 2.83 72% 6.48 4.66

4.44
Sim.Logis. [18] Reg. 50% 2.50 67% 5.94 4.22
Mul.Perc. [15] Neu.Net. 57% 2.83 74%6.66 4.75

4.87
SMO [28] Neu.Net. 73% 3.67 70% 6.30 4.98

(A.) Accuracy (Equation (1)) (G.) Gain (Equation (2))
(L.G) Learner Avg. Gain (C.G.) Class Avg. Gain

For the Commercial system, we have five regression-causes
in the test runs (four of them with performance regressions,
and one is normal), with six test runs for each regression-
cause. For the DS case study, we have nine regression-causes
in the test runs (eight of them with performance regressions,
and one is normal), with six test runs for each. Hence N is
30 and 54 and the value of r is 20% and 11% for Commercial
and DS respectively.

5.1.2 Results and Discussion

Table 3 shows the accuracy for each of the studied learn-
ers in both case studies. The first row shows the random
accuracy r (Equation (3)). If a machine learner performs
worse than r, then that learner is not useful.

The higher the accuracy of a learner compared to the ran-
dom predictor, the better the learner is. The seventh column
(L.G.) shows the average accuracy gained (Equation (2))
compared to the random predictor over the two case stud-
ies. This average gain indicates the usefulness of a learner.
The last column (C.G.) shows the average accuracy gained of
all the learners of a particular machine learning algorithm
class (column two). This shows which class of learners is
most suitable for our approach.

The first observation that we can make from the results
is that: most learners perform well compared to the
random predictor. The worst learner (LWL) has a gain of
2.73 times over the random predictor. The best learner (Ran-
domForest) gains 4.99 times. So, at Step 2e of our au-
tomated approach, when the engineers try to confirm the
regression-cause, they already have two to almost five times
advantage compared to a random approach. This advantage
would translate into saved time and e↵ort.

The second observation we can make from the results of
Table 3 is that: the most suitable learning technique
is system dependent. For the Commercial system, J48,
which is a Java implementation of the C4.5 [14] learner, is
the best learner with 80% accuracy. For DS, the best learner
is MultilayerPerceptron [15], a lazy type learner, with 74%
accuracy. This means that there is no universal best learner
to suggest probable regression-causes for all software sys-
tems. The learner can be accurate in suggesting the probable
regression-causes of one systems but not the other. Multi-
layerPerceptron and J48 [14] had the opposite accuracy for
the two case studies. MultilayerPerceptron can predict with
74% accuracy for DS (best out of 17) but can only achieve
57% for the Commercial system (11th out of 17). On the
other hand, J48 works the best for Commercial (80%) but
is the 14th best out of 17 learners for DS (56%).

The third observation is that: although there is no uni-
versal best learner, there are few good learners (and
classes of learners) for both case studies. Those learn-
ers are identified by the high average gain column (column
7 - L.G.). RandomForest [19] achieves an average gain of
4.99 times compared to the random predictor (which is 70%
and 72% for the Commercial and DS respectively). Simi-
larly SMO achieves average gain of 4.98. Hence using SMO,
we gain about three and a half times compared to the ran-
dom predictor for the Commercial system, and more than
six times for DS. In general, the neural network class, which
SMO is part of, has a good class-average gain which is 4.87
(last column of Table 3)). Note that we take the average to
quantify the class level gain, but the median produced very
similar results too. The decision tree class, which Random-
Forest is part of, also has good class-average gain of 4.60.
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Figure 4: Comparing the decision tree structure of the DS case study

So, if it is not possible to find the best learner for a software
system, learners from these two classes can be used.

The fourth observation is that: there are unsuitable
learners (and classes of learners) for both case stud-
ies. In general, the rule and lazy based learners are the worst
(class-average gain column of Table 3 - C.G.). While most of
the classes have class-average gain greater than four, these
two classes has less than four average gain. Rule based and
lazy learners are the simplest learners. They are more suit-
able for a low number of features (i.e. fewer counters), with
a large amount of data, and low amount of noisy data [30].
However, these learners can benefit from preprocessing tech-
niques [11], to remove the noisy counters. The fact that both
classes of learners perform badly suggests that the relation-
ships among the performance counters are not simple.

To examine more on why certain class of learners per-
formed very well (observation 2), we look at the decision tree
class of learners in Table 3 for the DS case study. In partic-
ular we compare J48 and RandomForest. In the commercial
case study, both learners have a similar performance. While
in the DS case study there is a much larger di↵erence in the
performance of these two learners (almost 16%). Therefore,
we compare the trees that are created by these two learners
in the DS case study to understand why there exists such a
di↵erence in performance.

Figure 4 are the decision trees for the J48 and Random-
Forest learners of the DS case study. As we can see, J48’s
decision tree is simple. On the left subtree of the root, the
decisions are based on the MySQL related counters. On the
right subtree, the decisions are based on the Tomcat related
counters. RandomForest’s decision tree, on the other hand,
uses both set of counters data throughout its structure.

The J48 learner is not able to take advantage of all the
relationships among the counters. So the gain and accuracy
achieved is low. The RandomForest learner was introduced
for this kind of situation [30]. It works by generating di↵er-
ent decision trees on a subset of counters. The decisions are
the most popular among all generated trees. The resulting
tree was able to take advantage of more relationships among
the counters. Thus, it has better gain and accuracy.

RandomForest learner can also be used to show impor-
tance of di↵erent counters for a specific classification prob-
lem. We run this analysis for the decision tree of the DS
case study (Figure 4(b)). Table 4 shows the top 20 most

important counters. If we look at the regression-causes of
the DS case study in Section 4, most of the causes should
mainly change the CPU and memory usages of the MySQL
and Tomcat process with the exception of cause F. How-
ever, Table 4 shows that the top most important counters
are mostly IO related. This is an example of the complex re-
lationship among counters which the machine learners, such
as RandomForest, are able to capture.

5.2 RQ2: How Much Training Data is Requi-
red?

The results of RQ1 shows good accuracy for both case
studies. So we have evidence that our approach is use-
ful. Assuming that a performance team wants to adopt
our approach, they would first need to build a repository
of test runs with identified regression-causes. Building such
a repository can be very time consuming. In RQ2, we want
to understand how much training data is needed before one
can start using our approach.

5.2.1 Approach

To determine the amount of performance test runs re-
quired in the repository (i.e., size of training set), we modify
the leave-one-out procedure in RQ1. The goal is to observe
the change in accuracy if we use one, two, three, four, or
five runs of each regression-cause for training instead of us-
ing all six runs as we did in RQ1. So, after picking one
random run for testing, we will only use n run(s), selected
randomly (where n is one to six), of each regression-cause
from the rest of the runs to train the learner. This will limit

Table 4: Variable importances (VI) of the counters in the
RandomForest decision tree (in 10�2)
VI Counter VI Counter
.93 SQL IO R B/s U .34 Tom. IO W B/s U
.78 SQL IO W B/s L .33 Tom. pool paged U
.78 Tom. IO data B/s L .31 Tom. pri. time L
.76 Tom. IO W B/s L .31 Tom. working set L
.69 SQL work. set U .28 SQL IO data O/s L
.66 SQL IO W O/s L .28 SQL IO R B/s L
.64 Tom. IO data B/s U .27 Tom. IO other B/s U
.53 SQL IO R O/s U .24 SQL IO R O/s U
.47 SQL IO data O/s U .23 Tom. page faults/s U
.46 Tom. page faults/s L .22 Tom. pool nonpaged B U
.35 SQL IO data B/s L .19 SQL User Time U
R=read W=write B=bytes O=operations U=Upper vio.

ratio L=Lower vio. ratio
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Figure 5: Accuracy of the top five learners using di↵erent number of test runs per regression-cause for training (RQ2).

the size of training data to n for each regression-cause. We
perform the procedure six times for each n and report the
accuracy. We note that, similar to RQ1, under no circum-
stance is the testing run used for training.

5.2.2 Results and Discussion

Figure 5(a) and 5(b) shows the results for both case stud-
ies. We perform the procedure mentioned above using the
top five learners according to the gain columns (G.) in Ta-
ble 3. The first set of bars in Figure 5(a) and 5(b) show the
accuracy when only one run of each regression-cause is used
for training. The second set of bars is the accuracy when we
use two test runs per regression-cause and so on.

We can make two observations from the results shown in
Figure 5(a) and Figure 5(b).

Firstly, in most cases, accuracy of the regression-cause
identification increases with the increase in training
data size. This is an indication of good learners for any
data mining application [29]. Since our approach (Figure 3)
is iterative, the more iterations there is, the more historical
data is available, and thus the better accuracy.

Secondly, for the Commercial case study, we did not reach
the top accuracy with six runs in our case study. For J48,
which is the best learner for this system, the accuracy in-
creases steadily from 30% when one run per regression-cause
is used, to 80% when six runs per regression-cause are used.
So the result has not reached a plateau yet. This indicates
that there is still room for improvement (when additional
runs can be added to the repository) in the Commercial
case study.

In contrast, we reach a plateau for the DS case study with
about four runs. This probably means that we have enough
runs for this case study. For Logistic, MultilayerPercep-
tron, and SMO, we reach 70% accuracy with four runs per
regression-cause. At five runs per regression-cause, we do
not have any additional gain in accuracy, thus indicating
that we have reached the maximum accuracy for the three
learners. At six runs per regression-cause, the accuracy of
MultilayerPerceptron does not improve. Logistic and SMO’s
accuracy even decreases. This is evidence of over-fitting [29].

6. APPLICATION AND FEEDBACK FROM
INDUSTRY

6.1 Application
To collect feedback from the performance engineers, we

applied our proposed approach on a few recently available

test runs of the commercial system as a proof of concept.
Setup: Since we can not build a historical repository be-

cause of the unavailability of certain data, we decided to use
the same injected runs as we used in RQ1 and RQ2 as our
historical test repository. These test runs are hence consid-
ered as synthetic test runs.

We asked two performance engineers of the commercial
system (besides the last two co-authors) for three test runs
with actual performance regressions. All three runs have
performance regressions as confirmed by the performance
engineering experts of the commercial system in a recent
testing cycle. The regression-cause has been confirmed to
be similar to one of the regression-causes that exist in our
repository. We also obtain three runs of the previous version
to use as baseline.

For each of the three runs, we apply our approach to
identify the regression-cause using the top five learners in
Table 3. Similar to RQ2, we train the learners with one
randomly chosen run per regression-cause. Then we train
with data from two, tree, four, five, and all 6 runs for each
regression-cause. For each of the three new test runs we mea-
sure the accuracy of each of the learners (i.e., whether the
predicted regression-cause is the actual regression-cause).
We repeat this procedure 6 times, so that in the case where
just one run is chosen per regression-cause, there is chance
for each of the 6 run for that regression-cause to be chosen.

Results: The accuracy is recorded in Figure 6. The first
set of bars show the accuracy when we use only one run per
regression-cause. The next set of bars show the accuracy
when we use two runs per regression-cause and so on.

For these particular runs with actual performance regres-
sion, our approach can accurately identify the actual regress-
ion-cause using the repository of synthetic test runs. Both
BayesNet and SMO reach 100% accuracy when only five test
runs per regression-cause are used as training data. At four
runs per cause, both learners reach 94% accuracy already.

The results support the possibility of adopting our ap-
proach in a commercial setting. Since not many software
system have a performance test repository with identified
regression, one can boot-strap our approach by creating a
synthetic repository of test runs with injected problems (due
to various causes). Using this repository, our approach can
be adopted without having to wait for test runs with actual
performance regressions.
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Figure 6: Accuracy of the top five learners when using the
synthetic runs to identify the regression-causes of three ac-
tual test runs of the commercial system.

6.2 Feedback
Apart from the high accuracy of our approach, the feed-

back from the performance engineers was positive. The en-
gineers were impressed with the potential time saving. They
compared our approach with a push information mechanism
such as Amazon’s book suggestion. Having the suggestions
would help them in completing the analysis earlier since they
do not have to go through all the data.

More importantly, the engineers said that the violation
ratios that we produced in Step A (Section 3) are simple
and easy to explain. It is easier to adopt an approach which
can be explained easily to other teams.

The engineers were also impressed that we only use the
standard resource counters which are available on any oper-
ating system. In reality, the software also implements their
own counters such as queue sizes or response-times of dif-
ferent processing threads. Such counters could potentially
improve the accuracy of finding regression-causes by our ap-
proach. We are going to examine this in our future work.

However, the engineers also noted some potential limita-
tions of our approach. First, we demonstrated our approach
on only one of their regressions. A larger industrial study
is required to justify the investment cost of applying our
approach. Second, we did not verify the accuracy of our
approach when there are multiple regression-causes in the
same test run. However, identifying standalone regression-
causes are also helpful to developers. In future work, we
will examine the case of multiple regression-causes. Third,
although the results show that any machine learner performs
better than the random predictor, the training set must have
su�cient number of test runs for each regression-cause. If
the regression-cause of the new test is new to the software
system, there would be no similar runs in the historical test
repository (Figure 3). Thus, the learner will output the
closest regression-cause that it can identify. This can be
misleading. The engineers can potentially mitigate this risk
by introducing synthetic runs for possible regression-causes
into the training set, but there is no guarantee. Fourth,
while our approach can save time, from manually check-
ing all the possible regression-causes, it might create un-
wanted distractions from the mismatched regression-causes
when the approach fails to produce a correct match. Fifth,
as the software evolves, the regression data in the reposi-
tory might become invalid over time, which might cause the
learners to produce misleading suggestions. A longitudinal

study is required to understand the e↵ect of evolution on
the accuracy of older runs. Finally, using our approach we
can identify the type of regression, but not the location of it.
Although finding the location would be be even more helpful
to the performance engineers, knowing that regression type
is the first step in the right direction. In future work, we
will explore how we can automatically find the code loca-
tion from the regression-cause. Even with these limitations,
the possibility of saving time makes our approach very at-
tractive to them.

7. RELATED WORK
There are many related studies which aim to detect prob-

lems in performance regression tests automatically. For ex-
ample, Foo et al. [16] detected changes among the perfor-
mance counters using association rules. If the di↵erences
are higher than a threshold, the run is marked as problem-
atic. Malik et al. [31] used a factor analysis technique called
principle component analysis to transform all the counters
into a small set of more distinct vectors. Then they compare
the pairwise correlations between the vectors in the target
run with those of the baseline run. Ghaith et al. [32] pro-
posed the use of queuing networks to detect performance
regression. Jiang et al. [5, 33] introduced approaches to au-
tomatically detect anomaly in a performance test. Their ap-
proaches automatically detect out-of-order sequences in the
software log. As in our previous studies [12, 11], where we
first proposed the use of control charts to detect performance
regressions, these related works only leverage the data of the
baseline and the new test run. Our approach in this paper
aim to improve previous results by leveraging a repository
of previous test data as well. Hence the related literature
presented above can only detect if a performance regression
has occurred, but not identify the regression-causes.

There are many studies [34, 35, 36, 37] in system engi-
neering which use machine learning or statistical techniques
on performance counters. However, their goal is to deter-
mine if a software system is performing well or not during
a particular time period. On the other hand, Altman et
al. [4] proposed an approach to detect the causes of per-
formance regression, which is similar to what we want to
achieve. While their approach can be very accurate, it uses
call stacks sampled throughout the test run. We believe that
our approach is more practical since call stacks are more
di�cult and costly to collect on all components of a large
software system.

8. CONCLUSION
In this paper, we proposed a new type of software repos-

itory and demonstrated its value through an industrial set-
ting. This repository of performance test runs allow us to
automatically identify the cause of performance regressions
in new test runs.

We conducted two case studies to develop and evaluate
our approach. The results show that our approach can ac-
curately suggest (up to 80% accuracy) the regression-cause
with a very small training dataset (sometimes with as few
as three or four test runs per regression-cause). Moreover,
this approach can be boot-strapped using synthetic test runs
with injected problems.

The results thus far are encouraging. For future research,
we are planning to adopt a code mutation approach which
randomly injects regressions into various parts of the code.
Then, we can use the same technique we have here to deter-



mine the di↵erent regression-causes in di↵erent areas of the
code. This eliminates the need of prior tests in our approach.
The engineer can use this mutation injections to generate all
synthetic test data that contains a large amount of possible
regression-causes to rapidly create their repository.
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