
An Empirical Study of Build System Migrations in Practice:
Case Studies on KDE and the Linux Kernel

Roman Suvorov, Meiyappan Nagappan, Ahmed E. Hassan, Ying Zou
SAIL, School of Computing, Queen’s University

Kingston, Ontario, Canada
{suvorov, mei, ahmed}@cs.queensu.ca, ying.zou@queensu.ca

Bram Adams
MCIS, École Polytechnique de Montréal

Montréal, Québec, Canada
bram.adams@polymtl.ca

Abstract—As the build system, i.e. the infrastructure that
constructs executable deliverables out of source code and other
resources, tries to catch up with the ever-evolving source
code base, its size and already significant complexity keep on
growing. Recently, this has forced some major software projects
to migrate their build systems towards more powerful build
system technologies. Since at all times software developers,
testers and QA personnel rely on a functional build system to
do their job, a build system migration is a risky and possibly
costly undertaking, yet no methodology, nor best practices have
been devised for it. In order to understand the build system
migration process, we empirically studied two failed and two
successful attempts of build system migration in two major
open source projects, i.e. Linux and KDE, by mining source
code repositories and tens of thousands of developer mailing
list messages. The major contributions of this paper are: (a)
isolating the phases of a common methodology for build system
migrations, which is similar to the spiral model for source code
development (multiple iterations of a waterfall process); (b)
identifying four of the major challenges associated with this
methodology: requirements gathering, communication issues,
performance vs. complexity of build system code, and effective
evaluation of build system prototypes; (c) detailed analysis of
the first challenge, i.e., requirements gathering for the new build
system, which revealed that the failed migrations did not gather
requirements rigorously. Based on our findings, practitioners
will be able to make more informed decisions about migrating
their build system, potentially saving them time and money.

Keywords-build systems; maintenance; restructuring.

I. INTRODUCTION

The build system, i.e., the infrastructure responsible for
transforming source code and other development artifacts
into deliverable executables and program files, lies at the
heart of each software project. The build system is being
directly or indirectly interacted with by most of the project’s
stakeholders: the developers need to run it every time they
need to check the effect of their source code changes,
while the quality assurance personnel uses it for testing [1],
and the release manager uses it to generate a new release.
Unfortunately, build systems have not received a significant
amount of attention from software researchers, with the
maintenance of such systems being a particularly grey area.

The ever increasing complexity and size of the build
system [2], [3] has forced many software projects to restruc-
ture their build systems to reduce that complexity, either
by means of major maintenance within the confines of
the existing build technology or by adopting a new one
altogether. We will refer to both kinds of maintenance efforts
as build migrations. For example, the Linux kernel project
significantly changed their existing Makefile-based build
system between v. 2.4 and 2.6. The K Desktop Environ-
ment (KDE) project adopted the new Cross-Platform Make
(CMake) build system technology in favour of the previously
used GNU build system (Autotools) for v. 4.

The build system migration process can be complex, with
unsuccessful migrations resulting in a significant waste of
time. A year was spent by the Linux kernel community on
a failed build system migration for kernel v. 2.5, with another
year spent on a successful one for kernel v. 2.6. The KDE
project spent about 5 months implementing a build system
based on Software Construction (SCons) technology before
adopting CMake, which took an additional year.

To help organizations better understand the scope and
risks of build system migration, and avoid wasting time and
resources, this paper studied two successful and two failed
attempts of build system migration of KDE and the Linux
kernel to identify a common methodology used (if any) and
major associated challenges. Our major contributions are:
(a) Identification of a common methodology for build

system migration. The phases that a build system
migration project goes through are similar to those de-
scribed by the spiral model for source code development.

(b) Identification of major challenges. By studying the
build system migration process of the Linux kernel and
KDE, we identified the following four major challenges:

• Requirements gathering: obtaining and verifying
requirements for the new build system proved par-
ticularly challenging for the two failed migrations
that we considered.

• Communication issues: due to the high complexity
of build systems, a build system migration requires
effort from many developers, especially build sys-
tem experts that have complete knowledge of the

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

build system’s intricacies. However, these experts
can easily become communication bottlenecks dur-
ing migration.

• Performance vs. complexity: improving build perfor-
mance has consistently been identified by develop-
ers as a top priority. However, doing so often comes
at the expense of complicating the build code with
shortcuts, special cases or “hacks” that increase the
complexity of the build code.

• Effective evaluation: while there are many imple-
mentation issues popping up during early stages
of a build system migration, projects do not seem
to establish explicit criteria for evaluating (and
possibly rejecting) the new build system.

(c) Requirements gathering process analysis. Since the
challenges occurring early on during build system mi-
gration turned out to have the largest impact on the
migration, we looked in more detail at the requirements
gathering process used by the two considered projects.
For the failed migrations, we found that stakeholder
identification was limited, elicitation used ineffective
“trawling” techniques, analysis underestimated the im-
portance of critical features, formal specification was not
done at all and validation was only performed on early
system prototypes.

The rest of the paper is organized in the following
sections:

II: Discusses background, introduces two case studies and
surveys related work;

III: Details the study design by specifying the data that was
gathered and analyzed in this paper;

IV: Profiles the build system migration process with rela-
tion to the spiral development model;

V: Addresses the challenge of requirements gathering;
VI: Elaborates on the threats to validity;

VII: Concludes the paper.

II. BACKGROUND AND RELATED WORK

Conceptually, a build system can be separated into two
layers: an interface for selecting the desired features and
environment (configuration layer), and a machinery of con-
struction tools, such as compilers, that produce the required
executables as efficiently as possible (construction layer) [4].

Despite the fact that a build system constitutes only a
small portion of the total code of a project (in case of the
Linux kernel, a near constant ≈ 1%), it has been shown that
changes to build code induce more relative churn than those
to source code [1]. Since such high churn rates have long
been linked to error-proneness, and build code complexity
keeps on increasing [2], [3], build systems are hard to
maintain.

As build systems require constant maintenance, many
organizations have tried to reduce this maintenance by either

migrating to a different build architecture while using the
same build technology (such as recursive vs. non-recursive
Makefiles) or by migrating from older build technologies
(such as Autotools) to more modern, easier to use build tech-
nologies (such as CMake). Hence, we define a build system
migration as either a (possibly thorough) restructuring within
the confines of the existing build system technology (e.g.,
Linux) or as a complete rewrite of a build system using a
different technology (e.g., KDE).

Since even routine build system maintenance is difficult,
migrations can be expected to pose even more challenges,
as can be seen in the two studied systems, i.e., KDE
and Linux. This paper studies the methodology used by
those projects during build system migration as well as the
major challenges encountered during migration. This section
introduces the migration story of the two subject systems,
then discusses related work.

A. KDE: Autotools → SCons → CMake

The need for a new build system for the upcoming
KDE 4 release was brought up in August-September 2005
at aKademy1, the annual conference of KDE users and
contributors. The community seemed eager to move on
to any build system that would be easier to use than the
current Autotools [5], which was often nicknamed “auto-
hell” due to its difficult to comprehend architecture [6].
As a result, the build system technology with the most
supporters amongst the aKademy attendees (SCons) was
adopted and the implementation of the next build system
started right away, without proper requirements gathering
and build system design.

Very quickly, several deficiencies of SCons, such as an im-
mature configuration layer [7], difficulties in porting to other
platforms [8] and sub-par incremental build performance [8],
prompted a wrapper layer bksys to be added on top, but
even that layer quickly grew in size and complexity without
fully fixing the underlying problems.

Starting in late 2005, a prominent build expert provided
a proof-of-concept build system using a promising new
technology (CMake). The maturity of CMake configuration
layer and flexibility of its construction layer were both
upgrades over SCons. Despite the initial concerns from
build engineers that had already completed most of the
SCons-based build system implementation, CMake gained
acceptance and eventually replaced SCons in April 2006 [9].

B. Linux: kbuild 2.4 → 2.5 → 2.6

kbuild2, the build system of the Linux kernel, went
through a couple of major transformations between v. 1.2
and 2.6, all driven by efforts to reduce complexity and

1http://akademy.kde.org/
2kbuild actually refers to the kernel build system for the Linux kernel v.

2.5 and 2.6. For brevity, we will use this term to refer to all versions of
the Linux kernel build system.

Figure 1. Evolution of Linux kernel source code, v. 2.4.0 to 2.6.39, with
millions of LOC (logarithmical scale) plotted against time.

improve maintainability [2]. Transition from v. 1.2 to 2.0
of the Linux kernel saw common build logic extracted into
a Rules.make script, and a massive rewrite of other build
scripts was carried out between kernel v. 2.2 and 2.4. The
kbuild 2.4 → 2.5 migration in 2001, however, proved espe-
cially challenging, as it aimed to rewrite the configuration
layer using a more concise Configuration Menu Language
(CML2) and by adopting a non-recursive make technology
for the construction layer.

However, both migrations were unsuccessful, mostly due
to the lack of backwards compatibility of CML2 and the lack
of incremental migration plan for the non-recursive make.
Hence, CML2 was rejected by Linus Torvalds [10], while
the changes to the construction layer were not supported by
other build system experts. CML1 eventually was replaced
by the KConfig configuration layer [11] (which incorporated
some of CML2’s features), while the construction layer was
restructured incrementally into a more powerful architecture
(still based on recursive make technology).

C. Related Work

In this subsection, we survey the related work in the field
of build system maintenance.

McIntosh et al. [1] analyze the overhead that build main-
tenance imposed on developers by studying one proprietary
and nine open source projects. They find that build systems
demand significant maintenance, with 4-16% of source code
work items in the analyzed Java projects and 27% of source
code work items in the analyzed C projects requiring an
accompanying build change. The authors also discover two
main build ownership styles, with either a small team of
build system experts handling most of the maintenance
or with build system maintenance dispersed among most
developers.

In this paper, we also find that build system maintenance
requires significant effort from developers, but we consider
only efforts during build system migration. Additionally, we
analyze this effort relative to the different phases of the spiral
model of software development to understand where most
effort is or needs to be spent to ensure the success of the
a migration. We find that the “concentrated” [1] ownership
model is used by both projects considered, but also observe
that build code ownership is even more explicit during the

migration period.
Adams et al. [4], [2] use MAKAO, a re(verse)-engineering

framework for build systems, to analyze the changes to the
Linux kernel build system from its inception to v. 2.6. They
discover that finding the right balance between implementing
a fast, correct build system and using incremental, stepwise
changes to accomplish this has been the general theme of
Linux kernel build system evolution. The authors analyze
the growth of the build system in terms of source lines of
code as well as the number of both explicit and implicit
dependencies. They conclude that the build system evolves,
grows in complexity, and has to be constantly maintained
to deal with this growing complexity. Similar findings were
obtained for Java-based build systems [3].

We also study the Linux kernel build system, but do so
at a higher abstraction level, while concentrating on the
migration period between kernel v. 2.4 and 2.6. Similar to
the findings of Adams et al. [2], we observe the constant
increase in Linux kernel build system complexity and the
co-evolution of source and build code (see Figure 1).

III. STUDY DESIGN

To derive the main phases of a build system migration
and identify its major challenges, we studied one suc-
cessful and one failed migration in both the KDE and
Linux kernel projects introduced above. We selected these
projects because of their age (in development since 1991
and 1996, respectively), size (25 and 4.3 million lines of
code, respectively [12], [13]) and well-documented, large-
scale build system migrations, as outlined in Section II.
Furthermore, both projects saw one failed migration attempt
and one successful attempt. The rest of this section discusses
the data sources used for our study and our methodology (see
Figure 2).

A. Data Sources

The version control repositories of KDE and the Linux
kernel (both projects use the git distributed version control
system3, see Table I) were mined using native logging
tools, Unix command-line utilities, and bash scripts to
gather statistics on commits to source code and the build
system, their evolution and relative churn. Commit history
was gathered for all files as well as for the build system only
(all-time and during a migration).

Qualitative information in the form of developer emails
came from a variety of sources, such as the official CMake
and kde-buildsystem (KDE-bdSys) mailing lists [14], [15],
the Linux Kernel Mailing List (LKML) and kbuild-devel
(KB-Dev) archives [16], [17], relevant articles online and
direct email conversations with some of the key developers,
notably Alexander Neundorf from KDE. Communication
statistics for Linux and KDE are based on all messages

3http://git-scm.com/

Figure 2. Summary of the data extraction, manipulation and analysis process.

Table I
GIT REPOSITORIES ANALYZED

Name URL From To # Com-
mits

kdelibs
(All)

git://
anongit.kde.org/
kdelibs.git

Apr 97 Mar 12 99,318

kdelibs
(Migration)

git://
anongit.kde.org/
kdelibs.git

Aug 05 Dec 06 12,310

Linux
(Pre-migr.)

git://git.kernel.org/
pub/scm/linux/kernel/
git/ralf/linux.git

Nov 94 Dec 00 1,491

Linux
(Migration)

git://git.kernel.org/
pub/scm/linux/kernel/
git/ralf/linux.git

Jan 01 Dec 03 2,685

Linux
(Post-migr.)

https://github.com/
torvalds/linux.git

Apr 05 Apr 12 298,789

Table II
MAILING LISTS ANALYZED

Name From To # msgs
(total)

#msgs
(build-
rel.)

%msgs
(build-
rel.)

KB-Dev Apr 01 Dec 03 2,688 2,049 76.23
LKML Jan 01 Apr 12 1,495,818 511,675 34.21

KDE-bdSys Sep 05 Apr 12 8,421 7,764 92.20
CMake Aug 05 Dec 06 3629 704 19.40

sent to the main mailing lists (LKML and kde-buildsystem,
respectively), as well as messages related to the build system
only (identified by keyword search in subject and body of
the message), sent all-time and during the build system
migration.

B. Methodology

1) Data extraction:

• Downloading KDE and CMake mailing list messages
as compressed plain text .mbox files using the corre-
sponding mailing list archives;

• Downloading LKML and KB-Dev messages
as plain text files using wget and a custom
getMailList.sh bash script;

• Gathering Linux and KDE commit data using git
log and git diff.

2) Data manipulation:

• Parsing KDE and CMake mailing list messages
into a PostgreSQL database using Bettenburg’s
mailboxMiner tool [18]. The tool uses message
headers to reconstruct the original threads and produces
a number of tables with a simple schema, allowing to
write SQL queries to analyze the messages and the
conversation dynamics.

• Using the resulting PostgreSQL database to find
“build-only” KDE and CMake messages by using
keyword-based heuristics (e.g., looking for “CMake”,
“SCons”, “build” in messages downloaded from the
kde-buildsystem mailing list) as well as gathering statis-
tics on message authorship;

• Finding “build-only” KB-Dev and LKML messages by
also using keyword-based heuristics (e.g., looking for
“config”, “Makefile”, “build” in messages downloaded
from LKML) and identifying their ownership using cus-
tom filterMsgs.sh and getAuthors.sh bash
scripts;

• Parsing git commit logs and git diff results us-
ing the custom filterCommits.sh bash script to
find “build-only” commits (e.g., looking for “scons”
or “bksys” in the commit log messages) and to gather
statistics on churn rates of build and source code.

Tables I and II summarize the data collected from the git
repositories and mailing lists, respectively.

3) Data analysis:

• Manual analysis of particularly interesting mailing list
messages (e.g., those containing lists of build system
requirements or discussing the ongoing build system
migration process);

• Manual analysis of personal emails from certain build
system experts as well as available online documenta-
tion;

• Plotting churn and commit data using Microsoft Excel
to find patterns related to build system migration.

IV. COMMON METHODOLOGY OF THE
BUILD SYSTEM MIGRATION PROCESS

To understand the general phases and participants in-
volved in build system migration, we analyzed the developer
communication data, commit history and other documenta-
tion available during build system migration. We found that
the development process closely resembles the spiral model
for source code restructuring, which combines elements of
the waterfall model with iterative prototyping [19]. Each
iteration goes through the four stages listed below and
produces a version (“prototype”) of the build system that
can be tested and evaluated: (i) planning; (ii) risk analysis;
(iii) development; (iv) evaluation.

We now discuss the four stages of the waterfall model
in the context of build system migration as well as the key
participants involved, using data from the KDE and Linux
kernel projects. We found that the first two phases, planning
and risk analysis, were performed concurrently and thus we
grouped them together below.

A. Key Participants

Although there are no formal positions in the open source
software projects that we studied, there is a latent hierarchy
of developers, as we discovered after analyzing the commit
history and mailing list activity of various developers. The
roles identified below are used in the rest of the paper to
abstract individual developers’ identities.

• Build system manager: This is a leadership role held
by a senior developer who is capable of making high-
level decisions and has extensive knowledge of the
build system. Managers are top contributors, active both
in modifying source and build code. They are also
active communicators, posting a lot of messages to the
mailing list. Examples:

– KDE: David Faure – one of the most senior and
respected developers and system administrators.
Active contributor since 1998 (two years after
KDE’s inception [20]), second-highest number of
commits on the project [13].

– Linux: Linus Torvalds – creator of the Linux kernel
in 1991. Leads the project and has most commits
to both source code (over 4% of total) and build
system (over 23%) [12].

• Build champion: Similar to the build system manager,
the build champion is a leadership role – someone who
recognizes the need for a build system restructuring
and takes the initiative to spearhead the development.
Champions do not modify source code much, but
contribute a lot to the build system, especially during
restructuring.

– KDE: Alexander Neundorf – main build system
expert at KDE (most commits made: almost one
fifth all-time and one third during the migration)
and principal CMake proponent. Active contributor
to both KDE and CMake projects since 1998 and
2006, respectively.

– Linux: Kai Germaschewski – restructured and opti-
mized the build scripts for kbuild 2.6. Made almost
28% of the commits to the kernel’s build system
during the migration.

• Build system expert: Due to the build system’s com-
plexity, its maintenance is typically left to a small team
of experts with extensive knowledge of this domain
(“concentrated” build ownership [1]). Experts are minor
source code contributors that are much more active in
build code maintenance.

– KDE: Ralf Habacker, Laurent Montel
– Linux: Sam Ravnborg, Brian Gerst

• Core developer: Other major developers on the project,
who may need to interact with the build system, but
do not have complete knowledge of its intricacies.
Unlike build experts, core developers are minor build
code contributors and are more prominent in core code
development.

– KDE: Gilles Caulier, Marco Martin
– Linux: Alexander Viro, Takashi Iwai

B. Build System Migration in Practice

The KDE and Linux kernel (to some degree) can be
clearly decomposed into subsystems or packages, which
benefits the incremental process outlined in the spiral model.
The current versions of KDE consist of 11,354 source code
files split into 22 packages, while the Linux kernel currently
consists of 33,289 source code files in 2,345 subdirectories
conceptually separated into 5 major subsystems [21]. During
build system migration, systematically new configuration
and compilation scripts are produced for each package or
source code subdirectory. As the build system migration
progresses, each new build system prototype is a superset
of the preceding one, incorporating more packages and sub-
systems in its configuration and construction layer. For each
prototype, the following phases are followed in practice:

1) Planning and Risk Analysis: At this stage, require-
ments for the next prototype are gathered (e.g., the targeted
build time for a particular hardware configuration), possi-
ble implementation approaches and their relative risks of
failure are evaluated, and, once a particular implementation
strategy has been chosen, future development and testing
activities are planned. We found that neither of the studied
projects initially paid proper attention to this stage, causing
development to start too early. This was due to: (a) a poor
choice of requirements gathering techniques and inadequate
participation by the stakeholders, and (b) communication

Figure 3. Normalized (maximum = 100%) weekly churn per file statistics
for KDE build and source code. Note the peaks during the August 2005 -
March 2006 migration period.

issues among developers, which resulted in disagreements
regarding implementation strategy and in slow development
due to lack of support from build system experts.

2) Development: Development and testing activities take
place during this stage. Build system migration is a period
of very active development, characterized by an unusually
high number of commits to the build system files and a
high churn, defined as the total lines of code changed in
each commit. Figure 3 illustrates this point for KDE, with
the source code showing no clear trend in terms of churn
per file, while the build code exhibits an activity peak during
the migration period.

3) Evaluation: During evaluation, the quality of the
current prototype is reviewed by QA personnel and the
performed code changes are either accepted or rejected.
The quality of the resulting prototype is evaluated. For
example, by January 2006 the prototypes of the SCons-
based KDE build system still suffered from poor incremental
build performance because this requirement was not stressed
enough during design. Similarly, in 2002 the construction
layer of the kbuild 2.5 prototype turned out to be too
different from the existing Makefiles and hence could
not be incrementally migrated into the existing Linux kernel
baseline, as such a requirement was not formulated.

C. Challenges

By studying the spiral model phases of the failed migra-
tions and contrasting them to the successful ones, we found
that build system migrations present software practitioners
with the following challenges:

• Requirements gathering: both projects found require-
ments gathering for a new build system particularly
challenging and resorted to extracting concrete require-
ments from all available information (such as devel-
opers’ “wish-lists”). These heterogeneous data sources
sometimes turned out to be self-conflicting well into
the development process.

• Communication issues: build system experts form a
sub-community that is very important to the success
of the build system migration, yet the build system
experts can be reluctant to communicate with the other
developers effectively.

• Performance vs. complexity: a sluggish build system
wastes the time of all stakeholders interacting with it,
and improving build performance has consistently been
identified by developers as a top priority. However,
improving performance often comes at the expense
of complicating the build code with shortcuts, special
cases or “hacks” that decrease its maintainability, the
very thing a build system migration is meant to address.

• Effective evaluation: to properly evaluate the current
prototype, a set of success criteria has to be agreed
upon by project stakeholders. Implementation issues are
widespread at early stages of a build system migration,
but at what stage would the current prototype be
rejected if those issues persist?

Since the challenges occurring early on during build
system migration turned out to have the largest impact on
the migration, the rest of the paper will elaborate on the
challenge of requirements gathering.

V. MAJOR CHALLENGE: REQUIREMENTS GATHERING

Requirements gathering is the first phase in the restruc-
turing project and thus lays the foundation for its future. Its
intent is to formulate as concrete a description of the desired
behaviour of the build system as possible by soliciting
requirements from the stakeholders. We provide concrete
examples below.

Using a modified model adapted from Dorfman [22], the
requirements gathering phase can be roughly divided into
five stages:

• Stakeholder identification: process of identifying and
involving all parties with an interest in the system;

• Elicitation: acquiring requirements from the identified
stakeholders;

• Analysis: refining the obtained requirements to identify
critical features and find compromises between conflict-
ing requirements;

• Specification: formal documentation of the final set of
analyzed requirements;

• Maintenance: validating that the requirements as spec-
ified reflect the requirements elicited from the stake-
holders as closely as possible and keeping the two sets
in sync.

We now consider the two case studies and see how each
approached different stages of the requirements gathering
process.

A. KDE: Autotools → SCons → CMake

1) Stakeholder Identification: Requirements gathering
process was started during aKademy 2005, the annual con-

Figure 4. Evolution of the bksys layer compared to kdelibs:
normalized size (maximum = 100%) plotted against time.

Table III
BKSYS COMPLEXITY

Metric Min,
value

Min,
date

Max,
value

Max,
date

Growth,
%

Lines of Code 1051 01/09/05 4828 24/02/06 359
Number of files 24 01/09/05 191 24/02/06 695
McCabe’s com-
plexity 173 01/09/05 898 24/02/06 419

Table IV
KDELIBS COMPLEXITY

Metric Min,
value

Min,
date

Max,
value

Max,
date

Growth,
%

Lines of Code 381738 27/11/05 398476 07/02/06 4.38
Number of files 2885 02/09/05 3428 27/03/06 18.82
McCabe’s com-
plexity 84983 27/03/06 89386 20/09/05 5.18

ference of KDE developers and users. Only 150 out of
more than 800 contributors participated, which physically
restricted the number of engaged stakeholders. Instead of de-
vising requirements and using them to choose a build system
technology that was most appropriate to KDE’s needs, the
choice was guided by the candidate technology’s popularity
with the stakeholders present at the conference [23].

2) Elicitation: Development of an SCons-based system
started shortly after aKademy 2005, during which only
a couple of major requirements were discussed, such as
platform independence. It was not until January 2006, almost
four months into development, that various SCons issues
were uncovered and a wrapper layer called bksys was
added to mitigate them. To formulate the requirements for
SCons/bksys, the project manager and build system experts
solicited help from developers using the so-called “trawling”
technique: looking for as much feedback as possible on
the kde-buildsystem mailing list as the main medium for
brainstorming [24]. This was not only ineffective (the two
main discussion threads only had 18 participants posting
53 messages [25], [26]), but also arguably too late in the

development process. Additional requirements quickly led
to a dramatic increase in size and complexity of the bksys
layer, as can be seen in Figure 4, which illustrates the evolu-
tion of the size of the build code (and its complexity, since
build size is highly correlated with build complexity [3]). As
one can see, while the corresponding source code grew only
moderately, the bksys size increased significantly starting
from September 2005 until it was removed altogether in
March 2006.

Tables III and IV provide specific complexity growth
rates for the bksys and kdelibs components (core KDE
C/C++ code, which comprises around 70% of all source
code [13]), respectively, along with the dates when mini-
mum/maximum values were reached. Growth percentages,
both in terms of size and complexity, make it clear that
bksys indeed went through a period of explosive growth
between September 2005 and February 2006, while the core
code base grew only moderately.

Although requirements for CMake were gathered using
the same kde-buildsystem mailing list, the new build sys-
tem had the advantage of being able to reuse existing
SCons/bksys requirements and, perhaps most importantly,
the CMake developers (i.e., build system experts) made
themselves easily available on the mailing list. They actively
used it for further requirements solicitation and requests for
new features [27], along with feedback and bug reports [28].
Finally, the migration champion plays a significant role in
pinpointing and steering initial requirements.

As an example, the following features were deemed most
important for a new KDE 4 build system:

• True platform-independence – being able to use the
same build code on Unix, Windows, Mac OS X, etc.

• Ability to perform high-level configuration;
• “Single-pass” methodology, with a single invocation of

the build system after adding/modifying code triggering
rebuilding and relinking, as necessary;

• Simple and platform-independent syntax.
3) Analysis: This stage of the requirement gathering

process for SCons did not receive much attention. One of
the primary new features of KDE 4 was support for new
platforms, primarily Windows and Mac OS X. 1508 out of
3540 messages (43%) on the build system mailing list during
the restructuring mentioned the former or the latter platform
in one context or another. Experts wanted the methodology
of the new build system to be more high-level, avoiding
platform-dependent hacks while having more flexibility in
the configuration layer [7], [29]. Despite the attention given
to support for new platforms, it was not until months into
development that build experts encountered significant issues
with implementing a platform-independent, high-level build
configuration layer. These two conflicting requirements led
to platform-specific code being added to the bksys wrapper
layer and its further growth. At its peak in late February 2006
as much as 23.29% of bksys’s code was platform-specific.

CMake also had to deal with conflicting requirements
concerning platform independence, as build experts wanted
to have a “single-pass methodology” system, in which after
modifying source code one call to the build system would
trigger all necessary rebuilding and relinking. However,
CMake does not produce executables directly but rather
generates the build scripts (e.g., Makefiles) and relies on
platform-native tools (e.g., make) to do the building. This
facilitates platform independence, but necessitates using a
multiple-pass methodology, separating the configuration and
construction layers.

4) Specification: The specifications for an SCons-based
build system were never formally recorded as the community
jumped straight into development. As for CMake, the initial
email in its support came from the build champion, in
which he outlined this build technology’s advantages and
disadvantages [30]. Although not a formal specification, it
was important to the KDE community, which at that point
had little to no familiarity with CMake.

5) Maintenance: At this stage, the requirements as gath-
ered are checked against information initially solicited from
stakeholders. This stage was not carried out at all for SCons
as development started right away after it was chosen at
aKademy 2005. The discussions regarding CMake’s adop-
tion continued into March 2006 and built upon those for
SCons. It can also be argued that the development pro-
cess was performed along with requirements maintenance,
as new desired features were identified and subsequently
implemented, partially through new build system code as
well as through six KDE-specific CMake releases. CMake-
related commits were frequent, as required by the spiral
model where incremental prototypes play a major role [19],
with 93 commits in 2006 alone (as opposed to 35 for SCons).

B. Linux, kbuild 2.4 → 2.5 → 2.6

1) Stakeholder Identification:: Suggestions to improve
the configuration system already were proposed in March
2000 [31]. More than 61% of the messages posted in 2001-
2003 on the kbuild-devel mailing list mentioned this topic.
At the end of March 2001, and similar to KDE, a conference
for 65 Linux kernel hackers took place [32], with the build
system being a prominent topic. Two build system experts
presented their ideas regarding evolution of the configuration
and construction layers. However, no hard decisions were
made and the proposed ideas were posted for consideration
on the official kbuild-devel mailing list, not restricting the
circle of involved stakeholders. The build experts preferred
the kbuild-devel list due to its exclusive focus on the build
system and lower message volume, with 14 out of 20 top
authors also being active in build system development.

Because different mailing lists exist for different dis-
cussion topics, not all relevant information regarding the
kernel’s build system was made easily available to the
general population of developers [33]. While some build

system experts, such as Eric Raymond, were active on both
lists (360 messages, i.e., 17.57% of all messages, on kbuild-
devel and 387 (0.46%) on LKML), others were a rare
sight at general-purpose discussion forum (one build expert,
in particular, generated 45 messages (2.20%) on kbuild-
devel versus just 11 (0.01%) on LKML). This purported
exclusivity of the community of build system hackers even
led to serious arguments [34], [35].

2) Elicitation: Both the failed and successful migrations
used the LKML mailing list as the main information medium
to elicit requirements from kernel developers. In fact, the
only difference between failed and successful build system
migrations was due to the increased activity level of the
community: the number of build-related messages on the
list jumped by more than 30% year-to-year from 2001 to
2002 to about 31,000 and stayed relatively the same for the
next three years.

Similar to KDE, the migration champion plays an impor-
tant role in identifying initial requirements. For example, the
following features were deemed critical for CML2 [31]:

• Using checks against the output of hardware diagnostics
commands to eliminate the user prompts when config-
uring on the same machine that will run the kernel;

• Common parser/configurator engine usable by multiple
front ends, e.g., command-line or GUI-oriented;

• Progressive disclosure: by specifying configuration
goals and level of expertise the system will ask the
user fewer questions.

Similarly, main items on the wish list for the Linux kernel
2.5 build system construction layer included the following:

• Building a kernel from read-only source;
• Making the build independent of location, avoiding

absolute file paths;
• Running dependency extraction automatically;
• Adding the ability to compile any single file;
• Optimizing parallelism.
These initial sets were of course greatly expanded on, but

nonetheless provided a useful starting point.
3) Analysis: During this phase, all requirements collected

are analyzed to remove potential conflicts. Both the configu-
ration and construction layer changes proposed for Linux 2.5
ran contrary to the kernel’s policy of making incremental,
reversible changes.

The CML2-based configuration layer was developed ex-
clusively by one build system expert, who devised the
requirements for the new system, designed and tested it.
After the initial proposal [31], the objections to the migration
focused on CML2’s reliance on Python and lack of back-
wards compatibility with CML1 [32], yet the new system
was tentatively approved by the build system manager. The
new system continued to be developed until its removal in
kernel v. 2.5.45, reaching more than 8,000 lines of code
that had to be discarded [36]. kbuild 2.6 ended up using
Kconfig [11], a different configuration system altogether.

The new construction layer development followed a sim-
ilar path, spearheaded by one build system expert. A major
change that it introduced was shifting away from the re-
cursive make implementation to a non-recursive one [37].
Again, the initial proposal to make this change was approved
by the build system manager. Unlike CML2, kbuild 2.5 was
not explicitly rejected, but rather never merged into the main
Linux kernel branch, and all attempts to do so went ignored
by the build system manager [38], who had concerns about
the drastic nature of changes and was supported in this
by another build system expert [39]. The main three-part
mailing list thread that was intended to draw the manager’s
attention to merging the new code contained 148 messages
from 51 distinct developers [40], yet no replies from its
intended target.

Much later, in 2007, Torvalds reflects on these events:
“Small and incremental improvements are much easier to
merge. If you go off and rewrite a subsystem, you shouldn’t
expect it to get merged, at least not unless it can live side-
by-side with the old one” [41].

4) Specification: Similar to KDE, the formal specifica-
tions for the build system were never recorded. However, the
champion of the failed CML2 migration initially announced
development to the community and produced reference
documentation for the new configuration layer since its early
versions [31], [42].

5) Maintenance: As development of the 2.5 kernel pro-
gressed, new features and tweaks were continuously pro-
posed. Almost 23,000 patches for 75 releases are docu-
mented in the official change logs (over 300 patches per
release), and 67 releases tweaked the build system. Over
27,000 commits were made during development and over a
thousand of those were related to the build system.

In particular, performance requirements for the construc-
tion layer were emphasized. Switching to a non-recursive
build provided some benefits, such as fixing dependency
generation problems, reducing Makefile complexity, and
enabling parallel builds. However, it also adds the compu-
tationally expensive phase of constructing the dependency
graph, which initially hindered kbuild 2.5’s performance.
Initially, correctness of the built binaries was regarded as
more important than the speed with which they were pro-
duced (e.g., “correctness trumps efficiency”) and requests
for better performance were not satisfied until later versions
of kbuild 2.5 in late 2002.

VI. THREATS TO VALIDITY

A. Internal Validity

Threats to internal validity concern our selection of tools
used for data extraction, manipulation, and analysis.

In particular, the git repositories used by both case stud-
ies may not always contain detailed commit log messages,
which we used to identify “build-only” commits. To address

this threat, we manually checked a few entries to ensure they
contain a useful log message.

The use of keyword-based heuristics may not have pro-
duced the desired results when identifying “build-only”
email messages. To rectify this, we experimented with vari-
ous keyword combinations to ensure “build-only” messages
are captured.

Finally, subjective analysis was used to classify the roles
of key participants of the build system migration process.
However, the data obtained from version control repositories
and mailing list archives left us with little doubt of the
correctness of such classification.

B. External Validity

Threats to external validity concern the possibility to
generalize our results. Four build system migrations were
analyzed in total, one failing and one successful for two
major open source projects. This may not provide enough
diversity in the studied data to ensure generalizability of our
conclusions, for example to other open source projects or
to closed-source systems. To address this threat, more case
studies in the field of build system migrations have to be
conducted.

VII. CONCLUSIONS AND FUTURE WORK

This paper empirically studied both the failed and success-
ful build system migrations that the KDE and Linux kernel
projects went through. We found that the underlying build
system migration process resembles the spiral model used in
source code development, and we isolated individual phases
of that process: risk analysis and planning, implementation,
and evaluation. High modularity exhibited by both the Linux
kernel and KDE benefits the incremental process outlined
in the spiral model. We also identified four of the major
challenges awaiting software practitioners attempting to per-
form a build system migration: (a) requirements gathering;
(b) communication issues between various stakeholders; (c)
balancing performance improvements with complexity of
build system code; (d) effective evaluation of build system
prototypes.

We performed detailed analysis of the first challenge,
namely requirements gathering. We discovered that both
the KDE and Linux kernel communities did not adequately
gather requirements for their new build system on the first
failed attempt. This was due to restricting or fractionalizing
the circle of involved stakeholders, eliciting requirements
inefficiently and missing critical conflicting requirements
during the analysis stage. For KDE, these problems were
mitigated in the successful migration to CMake by better
involvement of the third-party build system experts. For
Linux, the problems encountered in the first failed migration
were largely political due to poor communication with
the build system experts (especially with the build system
manager) and poor analysis of gathered requirements.

In conclusion, for both systems the failed migrations
served as a learning experience, focusing the attention of the
community on the second attempt. This resulted in better
involvement of developers in the migration process and
thus more detailed requirements gathered and analyzed, thus
producing clearer specifications for the new build system.
The fact that a second build system migration effort was
made despite significant loss of time due to the first, failed
attempt, emphasizes the importance of a well-tuned build
system for the developer communities and the need for a
clear build system migration methodology.

In future work, we intend to explore the other three build
system migration challenges identified in this paper for the
two studied systems. We are also considering more case
studies, such as Second Life, to ensure generalizability of
our conclusions.

REFERENCES

[1] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E.
Hassan, “An Empirical Study of Build Maintenance Effort,” in Proc.
of the 33rd Intl. Conf. on Software Engineering (ICSE), May 2011.

[2] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The
evolution of the linux build system,” Electronic Communications of
the ECEASST, vol. 8, February 2008.

[3] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant
build systems,” in Proc. of the 7th IEEE Working Conf. on Mining
Software Repositories (MSR), May 2010, pp. 42–51.

[4] B. Adams, K. De Schutter, H. Tromp, and W. D. Meuter, “Design
recovery and maintenance of build systems,” in Proc. of the 23rd Intl.
Conf. on Software Maintenance (ICSM), October 2007, pp. 114–123.

[5] A. A. Cid. (2012, Apr) bksys/scons (Re: win32 port). KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-January/000411.html

[6] A. Neundorf. (2012, Apr) Why the KDE project switched to CMake
- and how. [Online]. Available: https://lwn.net/Articles/188693

[7] D. Faure. (2012, Apr) bksys/scons (Re: win32 port). KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-January/000375.html

[8] B. Reed. (2012, Apr) Strategy for choosing a build system. KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-February/000804.html

[9] KDE e.V. (2012, Apr) The Road to KDE 4: CMake, a New
Build System for KDE — KDE.news. [Online]. Available: http:
//dot.kde.org/2007/02/21/road-kde-4-cmake-new-build-system-kde

[10] L. Torvalds. (2012, Apr) Linux-Kernel Archive: Re: State of
the new config & build system. [Online]. Available: http:
//lkml.indiana.edu/hypermail/linux/kernel/0112.3/0802.html

[11] R. Zippel. (2012, Apr) LinuxKernelConf. [Online]. Available:
http://zippel.home.xs4all.nl/lc

[12] Black Duck Software, Inc. (2012, Apr) Linux Kernel - Ohloh.
[Online]. Available: http://www.ohloh.net/p/linux

[13] ——. (2012, Apr) KDE - Ohloh. [Online]. Available: http:
//www.ohloh.net/p/kde

[14] Kitware, Inc. (2012, Apr) The CMake Archives. [Online]. Available:
http://www.cmake.org/pipermail/cmake

[15] KDE e.V. (2012, Apr) The Kde-buildsystem Archives. [Online].
Available: http://mail.kde.org/pipermail/kde-buildsystem

[16] The Trustees of Indiana University. (2012, Apr) The Linux-Kernel
Archive. [Online]. Available: http://lkml.indiana.edu/hypermail/linux/
kernel

[17] The Mail Archive. (2012, Apr) kbuild-devel. [Online]. Available:
{http://www.mail-archive.com/kbuild-devel@lists.sourceforge.net}

[18] N. Bettenburg, E. Shihab, and A. Hassan, “An empirical study on
the risks of using off-the-shelf techniques for processing mailing
list data,” in Proc. of the IEEE Intl. Conf. on Software Maintenance
(ICSM), Sep 2009, pp. 539–542.

[19] B. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[20] KDE e.V. (2012, Apr) David Faure — Behind KDE). [Online].
Available: http://www.behindkde.org/node/43

[21] I. Bowman, R. Holt, and N. Brewster, “Linux as a case study: Its
extracted software architecture,” in Proc. of the 21st intl. conf. on
Software engineering (ICSE), May 1999, pp. 555–563.

[22] M. Dorfman, “System and software requirements engineering,” in
IEEE Computer Society Press Tutorial. IEEE Computer Society
Press, 1990, pp. 7–22.

[23] K. e.V. (2012, Apr) KDE Events Homepage - Conference of
KDE Developers and Contributors. [Online]. Available: http:
//conference2005.kde.org/devconf.php

[24] S. Robertson, “Requirements trawling: techniques for discovering
requirements,” Intl. Journal of Human-Computer Studies, vol. 55,
no. 4, pp. 405–421, 2001.

[25] F.-E. Picca. (2012, Apr) win32 port. KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-January/000369.html

[26] D. Faure. (2012, Apr) Strategy for choosing a build system. KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-February/000821.html

[27] A. Winter. (2012, Apr) [FEATURE REQUEST] CMake and
Colors. KDE e.V. [Online]. Available: http://mail.kde.org/pipermail/
kde-buildsystem/2006-March/001890.html

[28] R. Habacker. (2012, Apr) cmake clean problem. KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-March/001445.html

[29] H. Schröder. (2012, Apr) Strategy for choosing a build
system. KDE e.V. [Online]. Available: http://mail.kde.org/pipermail/
kde-buildsystem/2006-January/000430.html

[30] A. Neundorf. (2012, Apr) bksys/scons (Re: win32 port). KDE e.V.
[Online]. Available: http://mail.kde.org/pipermail/kde-buildsystem/
2006-January/000409.html

[31] E. S. Raymond. (2012, Apr) [KBUILD] Time for a bullet? [Online].
Available: http://lwn.net/2000/0525/a/bullet.html

[32] J. Corbet. (2012, Apr) The Linux 2.5 Kernel Summit. [Online].
Available: http://lwn.net/2001/features/KernelSummit

[33] S. Ravnborg. (2012, Apr) Re: [kbuild-devel] your opinion on
cml2 and kbuild-2.5. [Online]. Available: http://lkml.indiana.edu/
hypermail/linux/kernel/0202.1/2004.html

[34] J. Andrews. (2012, Apr) Linux: CML2, ESR & The LKML —
KernelTrap. KernelTrap. [Online]. Available: http://kerneltrap.org/
node/17

[35] E. S. Raymond. (2012, Apr) Re: Cml1 cleanup patch.
[Online]. Available: http://lkml.indiana.edu/hypermail/linux/kernel/
0103.3/0193.html

[36] ——. (2012, Apr) The cml2 resources page. [Online]. Available:
http://www.catb.org/∼esr/cml2/

[37] K. Owens. (2012, Apr) Archives of the linux-kbuild
mailing list: [KBUILD] Kernel makefile wish list for 2.5.
Internet Archive. [Online]. Available: http://web.archive.org/web/
20010726142628/http://www.torque.net/kbuild/archive/0728.html

[38] ——. (2012, Apr) If you want kbuild 2.5, tell Linus [LWN.net].
[Online]. Available: http://lwn.net/Articles/1500/

[39] L. Torvalds. (2012, Apr) Re: KBuild 2.5 Impressions [LWN.net].
[Online]. Available: http://lwn.net/Articles/1495/

[40] K. Owens. (2012, Apr) Linux-Kernel Archive: kbuild 2.5 is
ready for inclusion in the 2.5 kernel. [Online]. Available:
http://lkml.indiana.edu/hypermail/linux/kernel/0205.0/0055.html

[41] L. Torvalds. (2012, Apr) Re: [ck] Re: Linus 2.6.23-rc1. [Online].
Available: https://lkml.org/lkml/2007/7/28/145

[42] E. S. Raymond. (2012, Apr) Cml2 language reference. [Online].
Available: http://www.catb.org/∼esr/cml2/cml2-reference.html

